如圖,△ABC內(nèi)接于⊙O,弦AD⊥AB交BC于點E,過點B作⊙O的切線交DA的延長線于點F,且∠ABF=∠ABC.
(1)求證:AB=AC;
(2)若AD=4,cos∠ABF=,求DE的長.
(1)證明見解析;(2).
【解析】
試題分析:(1)由BF是⊙O的切線,利用弦切角定理,可得∠ABF=∠C,又由∠ABF=∠ABC,可證得∠ABC=∠C.,即可得AB=AC.
(2)連接BD,在Rt△ADB中,解直角三角形求出AB的長度;然后在Rt△ABE中,解直角三角形求出AE的長度;最后利用求得結(jié)果.
(1)∵BF是⊙O的切線,∴∠ABF=∠C.
∵∠ABF=∠ABC,∴∠ABC=∠C.
∴AB=AC.
(2)如圖,連接BD,在Rt△ADB中,∠BAD=90°,
∵,∴.
∴AB=3.
在Rt△ABE中,∠BAE=90°,
∵,∴.
∴.
∴.
考點:1.切線的性質(zhì);2.等腰三角形的判定;3.圓周角定理;4.銳角三角函數(shù)定義;5.勾股定理.
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(內(nèi)蒙古包頭、烏蘭察布卷)數(shù)學(解析版) 題型:解答題
已知拋物線y=ax2+x+c(a≠0)經(jīng)過A(﹣1,0),B(2,0)兩點,與y軸相交于點C,該拋物線的頂點為點M,對稱軸與BC相交于點N,與x軸交于點D.
(1)求該拋物線的解析式及點M的坐標;
(2)連接ON,AC,證明:∠NOB=∠ACB;
(3)點E是該拋物線上一動點,且位于第一象限,當點E到直線BC的距離為時,求點E的坐標;
(4)在滿足(3)的條件下,連接EN,并延長EN交y軸于點F,E、F兩點關(guān)于直線BC對稱嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(內(nèi)蒙古包頭、烏蘭察布卷)數(shù)學(解析版) 題型:選擇題
如圖,在正方形ABCD中,對角線BD的長為.若將BD繞點B旋轉(zhuǎn)后,點D落在BC延長線上的點D′處,點D經(jīng)過的路徑為,則圖中陰影部分的面積是( 。
A.﹣1 B.﹣ C.﹣ D.π﹣2
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(內(nèi)蒙古包頭、烏蘭察布卷)數(shù)學(解析版) 題型:選擇題
下列計算正確的是( 。
A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣1
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年北京市通州區(qū)中考二模數(shù)學試卷(解析版) 題型:解答題
如圖,點E,F(xiàn)在BC上,BE=CF,AB=DC,∠B=∠C.
求證:∠A=∠D.
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年北京市西城區(qū)中考一模數(shù)學試卷(解析版) 題型:解答題
列方程(組)解應(yīng)用題:
某校甲、乙給貧困地區(qū)捐款購買圖書,每班捐款總數(shù)均為1200元,已知甲班比乙班多8人,乙班人均
捐款是甲班人均捐款的倍,求:甲、乙兩班各有多少名學生.
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年北京市海淀區(qū)中考一模數(shù)學試卷(解析版) 題型:解答題
對于平面直角坐標系 xOy中的點P(a,b),若點的坐標為(,)(其中k為常數(shù),且),則稱點為點P的“k屬派生點”.
例如:P(1,4)的“2屬派生點”為(1+,),即(3,6).
(1)①點P的“2屬派生點” 的坐標為____________;
②若點P的“k屬派生點” 的坐標為(3,3),請寫出一個符合條件的點P的坐標____________;
(2)若點P在x軸的正半軸上,點P的“k屬派生點”為點,且△為等腰直角三角形,則k的值為____________;
(3)如圖, 點Q的坐標為(0,),點A在函數(shù)的圖象上,且點A是點B的“屬派生點”,當線段B Q最短時,求B點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com