【題目】完全相同的4個小球,上面分別標(biāo)有數(shù)字1、-1、2、-2,將其放入一個不透明的盒子中搖勻,再從中隨機(jī)摸球兩次(第一次摸出球后放回?fù)u勻).把第一次、第二次摸到的球上標(biāo)有的數(shù)字分別記作,,以,分別作為一個點(diǎn)的橫坐標(biāo)與縱坐標(biāo),定義點(diǎn)在反比例函數(shù)上為事件(為整數(shù)),當(dāng)的概率最大時,則的所有可能的值為__________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程.
(1)x2﹣14x=8(配方法)
(2)x2﹣7x﹣18=0(公式法)
(3)(2x+3)2=4(2x+3)(因式分解法)
(4)2(x﹣3)2=x2﹣9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求證:AD平分∠BAC.
(2)已知AC=14,BE=2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ ABC中,AB=AC,∠ BAC=90°,直角∠ EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,給出以下四個結(jié)論:①AE=CF;②△ EPF是等腰直角三角形; ③2S四邊形AEPF=S△ ABC; ④BE+CF=EF.當(dāng)∠ EPF在△ ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(點(diǎn)E與A、B重合).上述結(jié)論中始終正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過P點(diǎn)作PF⊥AD交BC的延長線于點(diǎn)F,交AC于點(diǎn)H.(1)∠APB的度數(shù)為_______°;(2)求證:△ABP≌△FBP;(3)求證:AH+BD=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線經(jīng)過點(diǎn)M(1,3)和N(3,5)
(1)試判斷該拋物線與x軸交點(diǎn)的情況;
(2)平移這條拋物線,使平移后的拋物線經(jīng)過點(diǎn)A(﹣2,0),且與y軸交于點(diǎn)B,同時滿足以A、O、B為頂點(diǎn)的三角形是等腰直角三角形,請你寫出平移過程,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在、上各取一點(diǎn)E、D,使,連接、相交于點(diǎn)O,再連接、,若,則圖中全等三角形共有( )
A.2對B.3對C.4對D.5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六一期間,某公園游戲場舉行“迎奧運(yùn)”活動.有一種游戲的規(guī)則是:在一個裝有個紅球和若干個白球(每個球除顏色外其他相同)的袋中,隨機(jī)摸一個球,摸到一個紅球就得到一個奧運(yùn)福娃玩具.已知參加這種游戲活動為人次,公園游戲場發(fā)放的福娃玩具為個.
求參加一次這種游戲活動得到福娃玩具的概率;
請你估計袋中白球接近多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,,點(diǎn)的坐標(biāo)為,,點(diǎn)為線段上的動點(diǎn)(點(diǎn)不與、重合),連接,作,且,過點(diǎn)作軸,垂足為點(diǎn).
(1)求證:;
(2)猜想的形狀并證明結(jié)論;
(3)如圖2,當(dāng)為等腰三角形時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com