【題目】如圖(1),拋物線與y軸交于點A,E(0,b)為y軸上一動點,過點E的直線與拋物線交于點B、C .
(1)則點A的坐標(biāo)是 ______ ;
(2)當(dāng)b = 0時(如圖(2)),△ABE與△ACE的面積大小關(guān)系如何?當(dāng)時,上述關(guān)系還成立嗎,為什么?
(3)是否存在這樣的b,使得△BOC是以BC 為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.
【答案】(1)(0,-4);(2) 相等,成立,理由見解析;(3)存在, 當(dāng)b=4或-2時,ΔOBC為直角三角形,理由見解析.
【解析】
解:(1)點A的坐標(biāo)為(0,-4)
(2)當(dāng)b=0時,直線為
由
解得,
所以B、C的坐標(biāo)分別為(-2,-2),(2,2)
,
所以
當(dāng)時,仍有成立,理由如下
由
解得,
所以B、C的坐標(biāo)分別為,
作軸,軸,垂足分別為F、G,則
而和是同底的兩個三角形
所以(3)存在這樣的b
因為
所以
所以,即E為BC的中點
所以當(dāng)OE=CE時,△OBC為直角三角形
因為
所以
而
所以 解得,
所以當(dāng)b=4或-2時,ΔOBC為直角三角形
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在兩建筑物之間有一高為15米的旗桿,從高建筑物的頂端A點經(jīng)過旗桿頂點恰好看到矮建筑物的底端墻角C點,且俯角a為60°,又從A點測得矮建筑物左上角頂端D點的俯角β為30°,若旗桿底部點G為BC的中點(點B為點A向地面所作垂線的垂足)則矮建筑物的高CD為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了幫助貧困留守兒童,弘揚扶貧濟困的傳統(tǒng)美德,某校團委在學(xué)校舉行“送溫暖,獻愛心”捐款活動,全校2000名學(xué)生都積極參與了該次活動.為了解捐款情況,隨機調(diào)查了該校部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制出如下統(tǒng)計圖1和圖2,請根據(jù)相關(guān)信息,解答下列問題:
(I)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為_________________,圖1中m的值是_________________.
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額超過20元的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將拋物線M1:y=ax2+4x向右平移3個單位,再向上平移3個單位,得到拋物線M2,直線y=x與M1的一個交點記為A,與M2的一個交點記為B,點A的橫坐標(biāo)是﹣3.
(1)求a的值及M2的表達式;
(2)點C是線段AB上的一個動點,過點C作x軸的垂線,垂足為D,在CD的右側(cè)作正方形CDEF.
①當(dāng)點C的橫坐標(biāo)為2時,直線y=x+n恰好經(jīng)過正方形CDEF的頂點F,求此時n的值;
②在點C的運動過程中,若直線y=x+n與正方形CDEF始終沒有公共點,求n的取值范圍(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠BAC=60°,點P為邊BC的中點,分別以AB和AC為斜邊向外作Rt△ABD和Rt△ACE,且∠DAB=∠EAC=α,連結(jié)PD,PE,DE.
(1)如圖1,若α=45°,則= ;
(2)如圖2,若α為任意角度,求證:∠PDE=α;
(3)如圖3,若α=15°,AB=8,AC=6,則△PDE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線,下列結(jié)論:①;②;③;④當(dāng)時, 隨的增大而增大.其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個相等的實數(shù)根.其中正確結(jié)論的個數(shù)為( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鹽城電視塔是我市標(biāo)志性建筑之一.如圖,在一次數(shù)學(xué)課外實踐活動中,老師要求測電視塔的高度AB.小明在D處用高1.5 m的測角儀CD,測得電視塔頂端A的仰角為30°,然后向電視塔前進224 m到達E處,又測得電視塔頂端A的仰角為60°.求電視塔的高度AB.( 取1.73,結(jié)果精確到0.1 m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖直線l經(jīng)過正方形ABCD的頂點A,分別過此正方形的頂點B、D作BE⊥l于點E,DF⊥l于點F.以正方形對角線的交點O為端點,引兩條相互垂直的射線分別與AD、CD交于G、H兩點,若EF=2,S△ABE= ,則線段GH長度的最小值是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com