精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在直角坐標系中,已知點A(6,0),又點B(x,y)在第一象限內,且xy=8,設△AOB的面積是S.

(1)寫出Sx之間的函數解析式,并求出x的取值范圍;

(2)畫出(1)中所求函數的圖象.

【答案】10<x<8.(2)詳見解析.

【解析】

1)根據點A、B的坐標求得AOB的底邊OA與高線BC的長度;然后根據三角形的面積公式即可求得Sx的函數關系式;

2)利用兩點確定一條直線來畫一次函數的圖象;

1)∵點B在直線y=-x+8上,∴設Bx,-x+8),

y=-x+8xy軸的交點分別為(8,0)和(08)∵點B在第一象限,∴其橫坐標x的范圍是:0x8;

A60),點Bx,y),

OA=6,BC=yy0),

S=OABC=×6y=3y;

又∵x+y=8,

y=8-x

S=-3x+24.

,

解得0x8.

(2) ∵由(1)知,S=-3x+240x8);

S=0,則x=8;

x=0,則S=24,

∴一次函數S=-3x+24x0)經過點(80)、(0,24),

∴其圖象如圖所示:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,EFAD,∠1=2,∠BAC=70°,求∠AGD的度數。

解:∵EFAD,

∴∠2=

又∵∠1=2,

∴∠1=3

AB

∴∠BAC+ =180°(

∵∠BAC=70°,∴∠AGD=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我縣盛產綠色蔬菜,生產銷售一種綠色蔬菜,若在市場上直接銷售,每噸利潤為800元,經粗加工銷售,每噸利潤可達2000元,經精加工后銷售,每噸利潤漲至2500元.我縣一家農工商公司采購這種蔬菜若干噸生產銷售,若單獨進行精加工,需要30天才能完成,若單獨進行粗加工,需要20天才能完成.已知每天單獨粗加工比單獨精加工多生產10噸.

1)試問這家農工商公司采購這種蔬菜共多少噸?

2)由于兩種加工方式不能同時進行受季節(jié)條件限制,公司必須在24天內將這批蔬菜全部銷售或加工完畢,為此該公司研制了三種可行方案:

方案一:將蔬菜全部進行粗加工;

方案二:盡可能多的對蔬菜進行精加工,沒有來得及進行加工的蔬菜,在市場上直接銷售;

方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好24天完成,你認為選擇哪種方案獲利最多?請通過計算說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面材料:小明遇到這樣一個問題:

如圖1,ABC,B=2C,ADBC于點D,求證:BC=AB+2BD.

小明利用條件ADBC,CD上截取DH=BD,如圖2,連接AH,既構造了等腰ABH,又得到BH=2BD,從而命題得證。

(1)根據閱讀材料,證明:BC=AB+2BD;

(2)參考小明的方法,解決下面的問題:

如圖3,ABC,BAC=90°,ABD=BCE,ABC=DCE,請?zhí)骄?/span>ADBE的數量關系,并說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1

(1)當∠A為70°時,

∵∠ACD -∠ABD=∠____________

∴∠ACD -∠ABD=______________°

∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線

∴∠A1CD -∠A1BD=(∠ACD-∠ABD)

∴∠A1=___________°;

(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請寫出∠A與∠An 的數量關系____________;

(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構成的角,若∠A+∠D=230度,則∠F=  

(4)如圖3,若E為BA延長線上一動點,連EC,∠AEC與∠ACE的角平分線交于Q,當E滑動時有下面兩個結論:①∠Q+∠A1的值為定值;②∠Q —∠A1的值為定值.

其中有且只有一個是正確的,請寫出正確的結論,并求出其值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)先化簡,再求值:(x-3)2+2(x-2)(x+7)-(x+2)(x-2);其中x2+2x-3=0

2)已知,求: 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,為了測量某建筑物BC的高度,小明先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地而上向建筑物前進了50m到達D處,此時遇到一斜坡,坡度i=1: ,沿著斜坡前進20米到達E處測得建筑物頂部的仰角是45°,(坡度i=1: 是指坡面的鉛直高度FE與水平寬度DE的比).請你計算出該建筑物BC的高度.(取 =1.732,結果精確到0.1m).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】新農村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價格如下:第八層樓房售價為4000/2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套樓房面積均為1202

若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:

方案一:降價8%,另外每套樓房贈送a元裝修基金;

方案二:降價10%,沒有其他贈送.

1)請寫出售價y(元/2)與樓層x1≤x≤23,x取整數)之間的函數關系式;

2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

同步練習冊答案