【題目】如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,4),點(diǎn)B在x正半軸上,且∠ABO=30度.動點(diǎn)P在線段AB上從點(diǎn)A向點(diǎn)B以每秒個(gè)單位的速度運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒.在x軸上取兩點(diǎn)M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當(dāng)?shù)冗?/span>△PMN的頂點(diǎn)M運(yùn)動到與原點(diǎn)O重合時(shí)t的值;
(3)如果取OB的中點(diǎn)D,以OD為邊在Rt△AOB內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并求出S的最大值.
【答案】(1) y=﹣x+4 (2) PM=8﹣t,t=2 (3)當(dāng)0≤t≤1時(shí),S=2t+6;當(dāng)1<t<2時(shí),S=﹣2t2+6t+4;當(dāng)t=2時(shí),S=8;最大值為
【解析】
(1)根據(jù)已知條件求得點(diǎn)B的坐標(biāo),再用待定系數(shù)法求直線AB得解析式即可;(2)在Rt△AOB中,求得AB=8,即可表示出BP= 8-t,再由tan∠PBM=,即可用t的代數(shù)式表示PM得長;當(dāng)點(diǎn)M與點(diǎn)O重合時(shí),可得AO=2AP,由此即可求得t值;(3)根據(jù)當(dāng)0≤t≤1時(shí)、當(dāng)1<t<2時(shí)及當(dāng)t=2時(shí),分別求出S與t的函數(shù)解析式,并求得最大值,比較即可.
(1)由OA=4,∠ABO=30°,得到OB=12,
∴B(12,0),設(shè)直線AB解析式為y=kx+b,
把A和B坐標(biāo)代入得:,
解得:,
則直線AB的解析式為:y=﹣x+4.
(2)∵∠AOB=90°,∠ABO=30°,
∴AB=2OA=8,
∵AP=t,
∴BP=AB﹣AP=8t,
∵△PMN是等邊三角形,
∴∠MPB=90°,
∵tan∠PBM=,
∴PM=(8﹣t)×=8﹣t.
如圖1,過P分別作PQ⊥y軸于Q,PS⊥x軸于S,
可求得AQ=AP=t,PS=QO=4﹣t,
∴PM=(4﹣)÷=8﹣t,
當(dāng)點(diǎn)M與點(diǎn)O重合時(shí),
∵∠BAO=60°,
∴AO=2AP.
∴4=2t,
∴t=2.
(3)①當(dāng)0≤t≤1時(shí),見圖2.
設(shè)PN交EC于點(diǎn)G,重疊部分為直角梯形EONG,作GH⊥OB于H.
∵∠GNH=60°,,
∴HN=2,
∵PM=8﹣t,
∴BM=16﹣2t,
∵OB=12,
∴ON=(8﹣t)﹣(16﹣2t﹣12)=4+t,
∴OH=ON﹣HN=4+t﹣2=2+t=EG,
∴S=(2+t+4+t)×2=2t+6.
∵S隨t的增大而增大,
∴當(dāng)t=1時(shí),Smax=8.
②當(dāng)1<t<2時(shí),見圖3.
設(shè)PM交EC于點(diǎn)I,交EO于點(diǎn)F,PN交EC于點(diǎn)G,重疊部分為五邊形OFIGN.
作GH⊥OB于H,
∵FO=4﹣2t,
∴EF=2﹣(4﹣2t)=2t﹣2,
∴EI=2t﹣2.
∴S=S梯形ONGE﹣S△FEI=2t+6﹣(2t﹣2)(2t﹣2)=﹣2t2+6t+4
由題意可得MO=4﹣2t,OF=(4﹣2t)×,PC=4﹣t,PI=4﹣t,
再計(jì)算S△FMO=(4﹣2t)2×
S△PMN=(8﹣t)2,S△PIG=(4﹣t)2,
∴S=S△PMN﹣S△PIG﹣S△FMO=(8﹣t)2﹣(4﹣t)2﹣(4﹣2t)2×
=﹣2t2+6t+4
∵﹣2<0,
∴當(dāng)時(shí),S有最大值,Smax=.
③當(dāng)t=2時(shí),MP=MN=6,即N與D重合,
設(shè)PM交EC于點(diǎn)I,PD交EC于點(diǎn)G,重疊部
分為等腰梯形IMNG,見圖4.S=×62﹣×22=8,
綜上所述:當(dāng)0≤t≤1時(shí),S=2t+6;
當(dāng)1<t<2時(shí),S=﹣2t2+6t+4;
當(dāng)t=2時(shí),S=8.
∵,
∴S的最大值是 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A(1,﹣4),且過點(diǎn)B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= (m為常數(shù),且m≠5).
(1)若在其圖象的每個(gè)分支上,y隨x的增大而增大,求m的取值范圍;
(2)若其圖象與一次函數(shù)y=-x+1的圖象的一個(gè)交點(diǎn)的縱坐標(biāo)是3,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車行駛時(shí)的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出汽車行駛400千米時(shí),油箱內(nèi)的剩余油量,并計(jì)算加滿油時(shí)油箱的油量;
(2)求關(guān)于的函數(shù)關(guān)系式,并計(jì)算該汽車在剩余油量5升時(shí),已行駛的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點(diǎn)A′逆時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為( 。
A.4,30° B.2,60° C.1,30° D.3,60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】適逢中高考期間,某文具店平均每天可賣出支鉛筆,賣出支鉛筆的利潤是元,經(jīng)調(diào)查發(fā)現(xiàn),零售單價(jià)毎降元,每天可多賣出支鉛筆,為了使每天獲取的利潤更多,該文具店決定把零售單價(jià)下降元
零售單價(jià)下降元后,該文具店平均每天可賣出________支鉛筆,總利潤為________元.
在不考慮其他因素的條件下,當(dāng)定為多少元時(shí),才能使該文具店每天賣鉛筆獲取的利潤為元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一元二次方程,下列說法:①若a+c=0,方程有兩個(gè)不等的實(shí)數(shù)根;②若方程有兩個(gè)不等的實(shí)數(shù)根,則方程也一定有兩個(gè)不等的實(shí)數(shù)根;③若c是方程的一個(gè)根,則一定有成立;④若m是方程的一個(gè)根,則一定有成立.其中正確地只有 ( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課間,小明拿著老師的等腰直角三角板玩,不小心掉到兩墻之間,如圖,.
(1)求證:;
(2)若三角板的一條直角邊,請你幫小明求出砌墻磚塊的厚度a的大小(每塊磚的厚度相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形 CDE 的腰 CD=2 在 x 軸上,∠ECD=45°,將三角形 CDE 繞點(diǎn) C 逆時(shí)針旋轉(zhuǎn) 75°,點(diǎn) E 的對應(yīng)點(diǎn) N 恰好落在 y 軸上,則點(diǎn) N 的坐標(biāo)為( )
A. (0,3) B. (0,2) C. (0, ) D. (0, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com