如圖,已知在Rt△OAC中,O為坐標(biāo)原點(diǎn),直角頂點(diǎn)C在x軸的正半軸上,反比例函數(shù)y=
k
x
(k≠0)在第一象限的圖象經(jīng)過(guò)OA的中點(diǎn)B,交AC于點(diǎn)D,連接OD.若△OCD∽△ACO,則直線OA的解析式為
 
考點(diǎn):相似三角形的性質(zhì),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征
專題:數(shù)形結(jié)合
分析:設(shè)OC=a,根據(jù)點(diǎn)D在反比例函數(shù)圖象上表示出CD,再根據(jù)相似三角形對(duì)應(yīng)邊成比例列式求出AC,然后根據(jù)中點(diǎn)的定義表示出點(diǎn)B的坐標(biāo),再根據(jù)點(diǎn)B在反比例函數(shù)圖象上表示出a、k的關(guān)系,然后用a表示出點(diǎn)B的坐標(biāo),再利用待定系數(shù)法求一次函數(shù)解析式解答.
解答:解:設(shè)OC=a,
∵點(diǎn)D在y=
k
x
上,
∴CD=
k
a
,
∵△OCD∽△ACO,
OC
CD
=
AC
OC
,
∴AC=
OC2
CD
=
a3
k
,
∴點(diǎn)A(a,
a3
k
),
∵點(diǎn)B是OA的中點(diǎn),
∴點(diǎn)B的坐標(biāo)為(
a
2
,
a3
2k
),
∵點(diǎn)B在反比例函數(shù)圖象上,
k
a
2
=
a3
2k
,
a4
2
=2k2
∴a4=4k2,
解得,a2=2k,
∴點(diǎn)B的坐標(biāo)為(
a
2
,a),
設(shè)直線OA的解析式為y=mx,
則m•
a
2
=a,
解得m=2,
所以,直線OA的解析式為y=2x.
故答案為:y=2x.
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,用OC的長(zhǎng)度表示出點(diǎn)B的坐標(biāo)是解題的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=2x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,把△AOB沿y軸翻折,點(diǎn)A落到點(diǎn)C,過(guò)點(diǎn)B的拋物線y=-x2+bx+c與直線BC交于點(diǎn)D(3,-4).
(1)求直線BD和拋物線的解析式;
(2)在第一象限內(nèi)的拋物線上,是否存在一點(diǎn)M,作MN垂直于x軸,垂足為點(diǎn)N,使得以M、O、N為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在直線BD上方的拋物線上有一動(dòng)點(diǎn)P,過(guò)點(diǎn)P作PH垂直于x軸,交直線BD于點(diǎn)H,當(dāng)四邊形BOHP是平行四邊形時(shí),試求動(dòng)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x=
2
5
+1
,求:①x3+2x2+1的值;②
x2
x4+x2+1
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

九(1)班同學(xué)在上學(xué)期的社會(huì)實(shí)踐活動(dòng)中,對(duì)學(xué)校旁邊的山坡護(hù)墻和旗桿進(jìn)行了測(cè)量.
(1)如圖1,第一小組用一根木條CD斜靠在護(hù)墻上,使得DB與CB的長(zhǎng)度相等,如果測(cè)量得到∠CDB=38°,求護(hù)墻與地面的傾斜角α的度數(shù).
(2)如圖2,第二小組用皮尺量的EF為16米(E為護(hù)墻上的端點(diǎn)),EF的中點(diǎn)離地面FB的高度為1.9米,請(qǐng)你求出E點(diǎn)離地面FB的高度.
(3)如圖3,第三小組利用第一、第二小組的結(jié)果,來(lái)測(cè)量護(hù)墻上旗桿的高度,在點(diǎn)P測(cè)得旗桿頂端A的仰角為45°,向前走4米到達(dá)Q點(diǎn),測(cè)得A的仰角為60°,求旗桿AE的高度(精確到0.1米).
備用數(shù)據(jù):tan60°=1.732,tan30°=0.577,
3
=1.732,
2
=1.414.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,∠AOB=45°,點(diǎn)O1在OA上,OO1=7,⊙O1的半徑為2,點(diǎn)O2在射線OB上運(yùn)動(dòng),且⊙O2始終與OA相切,當(dāng)⊙O2和⊙O1相切時(shí),⊙O2的半徑等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為2的菱形ABCD中,∠A=60°,M是AD邊的中點(diǎn),N是AB邊上的一動(dòng)點(diǎn),將△AMN沿MN所在直線翻折得到△A′MN,連接A′C,則A′C長(zhǎng)度的最小值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式2x-a≤0只有三個(gè)正整數(shù)解,那么這時(shí)正整數(shù)a的取值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若|sinA-
1
2
|+(1-tanB)2=0,則∠C的度數(shù)為
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)稱為“夢(mèng)之點(diǎn)”,例如點(diǎn)(-1,-1),(0,0),(
2
,
2
),…都是“夢(mèng)之點(diǎn)”,顯然,這樣的“夢(mèng)之點(diǎn)”有無(wú)數(shù)個(gè).
(1)若點(diǎn)P(2,m)是反比例函數(shù)y=
n
x
(n為常數(shù),n≠0)的圖象上的“夢(mèng)之點(diǎn)”,求這個(gè)反比例函數(shù)的解析式;
(2)函數(shù)y=3kx+s-1(k,s是常數(shù))的圖象上存在“夢(mèng)之點(diǎn)”嗎?若存在,請(qǐng)求出“夢(mèng)之點(diǎn)”的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若二次函數(shù)y=ax2+bx+1(a,b是常數(shù),a>0)的圖象上存在兩個(gè)不同的“夢(mèng)之點(diǎn)”A(x1,x1),B(x2,x2),且滿足-2<x1<2,|x1-x2|=2,令t=b2-2b+
157
48
,試求出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案