精英家教網 > 初中數學 > 題目詳情

【題目】△ABC是一張等腰直角三角形紙板,∠C=Rt∠,AC=BC=2,

1)要在這張紙板中剪出一個盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲、乙兩種剪法,哪種剪法所得的正方形面積大?請說明理由.

2)圖1中甲種剪法稱為第1次剪取,記所得正方形面積為s1;按照甲種剪法,在余下的△ADE△BDF中,分別剪取正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為s2(如圖2),則s2=;再在余下的四個三角形中,用同樣方法分別剪取正方形,得到四個相同的正方形,稱為第3次剪取,并記這四個正方形面積和為s3,繼續(xù)操作下去,則第10次剪取時,s10=;

3)求第10次剪取后,余下的所有小三角形的面積之和.

【答案】解:(1)解法1:如圖甲,由題意,得AE=DE=EC,即EC=1S正方形CFDE=12=1

如圖乙,設MN=x,則由題意,得AM=MQ=PN=NB=MN=x,

,

解得

甲種剪法所得的正方形面積更大.

說明:圖甲可另解為:由題意得點D、EF分別為AB、AC、BC的中點,S正方形OFDE=1

解法2:如圖甲,由題意得AE=DE=EC,即EC=1

如圖乙,設MN=x,則由題意得AM=MQ=QP=PN=NB=MN=x,

,

解得,

,即ECMN

甲種剪法所得的正方形面積更大.

2,

3)解法1:探索規(guī)律可知:

剩余三角形面積和為=

解法2:由題意可知,

第一次剪取后剩余三角形面積和為2﹣S1=1=S1

第二次剪取后剩余三角形面積和為,

第三次剪取后剩余三角形面積和為

第十次剪取后剩余三角形面積和為

【解析】

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,AB3cm,以B為圓心,1cm長為半徑畫⊙B,點P在⊙B上移動,連接AP,并將AP繞點A逆時針旋轉90°至AP′,連接BP′.在點P移動的過程中,BP′長度的最小值為_____cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:在平面直角坐標系xOy中,直線yaxm+k稱為拋物線yaxm2+k的關聯直線.

1)求拋物線yx2+6x1的關聯直線;

2)已知拋物線yax2+bx+c與它的關聯直線y2x+3都經過y軸上同一點,求這條拋物線的表達式;

3)如圖,頂點在第一象限的拋物線y=﹣ax12+4a與它的關聯直線交于點AB(點A在點B的左側),與x軸負半軸交于點C,連結AC、BC.當ABC為直角三角形時,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,P點是某海域內的一座燈塔的位置,船A停泊在燈塔P的南偏東53°方向的50海里處,船B位于船A的正西方向且與燈塔P相距20海里.(本題參考數據sin53°≈0.80,cos53°≈0.60tan53°≈1.33)

(1)試問船B在燈塔P的什么方向?

(2)求兩船相距多少海里?(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算

(1)x2+6x20(配方法)

(2)已知關于x的方程2x2+(k2)x+10有兩個相等的實數根,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一個腰長為4cm,底邊長為3cm的等腰三角形,現在要利用這個等腰三角形加工出一個邊長比是1:2的平行四邊形,使平行四邊形的一個內角恰好是這個等腰三角形的底角,平行四邊形的其他頂點均在三角形的邊上,則這個平行四邊形的較短的邊長是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在RtABC中,∠C90°,AC8cmBC6cm,點PB出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點QA出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為ts)(0t4),解答下列問題:

1)當t為何值時,PQBC;

2)設△AQP的面積為ycm2),求yt之間的函數關系式;

3)是否存在某一時刻t,使線段PQ恰好把RtACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;

4)如圖,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,那么是否存在某一時刻t,使四邊形PQPC為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知矩形ABCD和矩形EFGO在平面直角坐標系中,點BF的坐標分別為(4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點P(PGC)是位似中心,則點P的坐標為(  )

A. (0,3)

B. (0,2.5)

C. (0,2)

D. (0,1.5)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖ABCD的對角線相交于點O,點E在邊BC的延長線上,且OE=OB,連接DE

1求證:DEBE;

2如果OECD,求證:BD·CE=CD·DE

查看答案和解析>>

同步練習冊答案