【題目】在初中數(shù)學(xué)學(xué)習(xí)階段,我們常常會利用一些變形技巧來簡化式子,解答問題.
材料一:在解決某些分式問題時,倒數(shù)法是常用的變形技巧之一,所謂倒數(shù)法,即把式子變成其倒數(shù)形式,從而運(yùn)用約分化簡,以達(dá)到計算目的.
例:已知:,求代數(shù)式x2+的值.
解:∵,∴=4
即=4∴x+=4∴x2+=(x+)2﹣2=16﹣2=14
材料二:在解決某些連等式問題時,通?梢砸?yún)?shù)“k”,將連等式變成幾個值為k的等式,這樣就可以通過適當(dāng)變形解決問題.
例:若2x=3y=4z,且xyz≠0,求的值.
解:令2x=3y=4z=k(k≠0)
則
根據(jù)材料回答問題:
(1)已知,求x+的值.
(2)已知,(abc≠0),求的值.
(3)若,x≠0,y≠0,z≠0,且abc=7,求xyz的值.
【答案】(1)5;
(2);
(3)
【解析】
(1)仿照材料一,取倒數(shù),再約分,利用等式的性質(zhì)求解即可;
(2)仿照材料二,設(shè)===k(k≠0),則a=5k,b=2k,c=3k,代入所求式子即可;
(3)本題介紹兩種解法:
解法一:(3)解法一:設(shè)===(k≠0),化簡得:①,②,③,相加變形可得x、y、z的代入=中,可得k的值,從而得結(jié)論;
解法二:取倒數(shù)得:==,拆項得,從而得x=,z=,代入已知可得結(jié)論.
解:(1)∵=,
∴=4,
∴x﹣1+=4,
∴x+=5;
(2)∵設(shè)===k(k≠0),則a=5k,b=2k,c=3k,
∴===;
(3)解法一:設(shè)===(k≠0),
∴①,②,③,
①+②+③得:2()=3k,
=k④,
④﹣①得:=k,
④﹣②得:,
④﹣③得:k,
∴x=,y=,z=代入=中,得:
=,
,
k=4,
∴x=,y=,z=,
∴xyz===;
解法二:∵,
∴,
∴,
∴,
∴,
將其代入中得: =
=,y=,
∴x=,z==,
∴xyz==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, , ,以點(diǎn)為頂點(diǎn)、為腰在第三象限作等腰.
()求點(diǎn)的坐標(biāo).
()如圖, 為軸負(fù)半軸上一個動點(diǎn),當(dāng)點(diǎn)沿軸負(fù)半軸向下運(yùn)動時,以為頂點(diǎn), 為腰作等腰,過作軸于點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)A、點(diǎn)B分別是y軸、x軸上兩個動點(diǎn),直角邊AC交x軸于點(diǎn)D,斜邊BC交y軸于點(diǎn)E;
(1)如圖(1),已知C點(diǎn)的橫坐標(biāo)為-1,直接寫出點(diǎn)A的坐標(biāo);
(2)如圖(2), 當(dāng)?shù)妊?/span>Rt△ABC運(yùn)動到使點(diǎn)D恰為AC中點(diǎn)時,連接DE,求證:∠ADB=∠CDE;
(3)如圖(3), 若點(diǎn)A在x軸上,且A(-4,0),點(diǎn)B在y軸的正半軸上運(yùn)動時,分別以OB、AB為直角邊在第一、二象限作等腰直角△BOD和等腰直角△ABC,連結(jié)CD交y軸于點(diǎn)P,問當(dāng)點(diǎn)B在y軸的正半軸上運(yùn)動時,BP的長度是否變化?若變化請說明理由,若不變化,請求出BP的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD相交于點(diǎn)O,AB⊥AC,AB=3,BC=5,點(diǎn)P從點(diǎn)A出發(fā),沿AD以每秒1個單位的速度向終點(diǎn)D運(yùn)動.連結(jié)PO并延長交BC于點(diǎn)Q.設(shè)點(diǎn)P的運(yùn)動時間為t秒.
(1)求BQ的長,(用含t的代數(shù)式表示)
(2)當(dāng)四邊形ABQP是平行四邊形時,求t的值
(3)當(dāng)點(diǎn)O在線段AP的垂直平分線上時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】( 1)計算: ﹣4sin30°+(2015﹣π)0﹣(﹣3)2
(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個定點(diǎn),且∠MPN與∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個數(shù)為( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點(diǎn),AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當(dāng)AB=6時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中實(shí)線所示,函數(shù)y=|a(x﹣1)2﹣1|的圖象經(jīng)過原點(diǎn),小明同學(xué)研究得出下面結(jié)論:
①a=1;②若函數(shù)y隨x的增大而減小,則x的取值范圍一定是x<0;
③若方程|a(x﹣1)2﹣1|=k有兩個實(shí)數(shù)解,則k的取值范圍是k>1;
④若M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函數(shù)圖象的四個不同點(diǎn),且m1<m2<m3<m4,則有m2+m3﹣m1=m4.其中正確的結(jié)論有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在軸上,,,,將繞點(diǎn)按順時針方向旋轉(zhuǎn)得到,則點(diǎn)的坐標(biāo)是( )
A. (2,-2) B. (2,-2) C. (2,2) D. (2,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com