【題目】為了增強(qiáng)學(xué)生的安全意識,某校組織了一次全校1500名學(xué)生都參加的“安全知識”考試,考題共10題.考試結(jié)束后,學(xué)校隨機(jī)抽查部分考生的考卷,對考生答題情況進(jìn)行分析統(tǒng)計,發(fā)現(xiàn)所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息解答以下問題:

1)本次抽查的樣本容量是  ;在扇形統(tǒng)計圖中,m  ,n  ,“答對10題”所對應(yīng)扇形的圓心角為  度;

2)將條形統(tǒng)計圖補(bǔ)充完整;

3)請根據(jù)以上調(diào)查結(jié)果,估算出該校答對超過7題的學(xué)生人數(shù).

【答案】15016,3072;(2)見解析;(31110

【解析】

1)先讀圖,根據(jù)圖形中的信息逐個求出即可;
2)求出人數(shù),再畫出即可;
3)根據(jù)題意列出算式,再求出即可.

解:(15÷10%50(人),

本次抽查的樣本容量是50,

0.1616%,110%16%24%20%30%

m16,n30,

360°×20%72°,

故答案為:5016,3072;

2)條形圖如圖所示:

;

3)(24%+30%+20%×15001110(人).

答:該校答對超過7題的學(xué)生人數(shù)有1110人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD中,AB,AD4,在BC邊上取點E,使BEAB,將△ABE向左平移到△DCF的位置,得到四邊形AEFD

1)求證:四邊形AEFD是菱形;

2)如圖2,將△DCF繞點D旋轉(zhuǎn)至△DGA,連接GE,求線段GE的長;

3)如圖3,設(shè)P、Q分別是EFAE上的兩點,且PDQ=67.5°,試探究線段PF、AQ、PQ之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,是坐標(biāo)原點,正方形的頂點、分別在軸與軸上,已知正方形邊長為3,點軸上一點,其坐標(biāo)為,連接,點從點出發(fā)以每秒1個單位的速度沿折線的方向向終點運動,當(dāng)點與點重合時停止運動,運動時間為秒.

1)連接,當(dāng)點在線段上運動,且滿足時,求直線的表達(dá)式;

2)連接、,求的面積關(guān)于的函數(shù)表達(dá)式;

3)點在運動過程中,是否存在某個位置使得為等腰三角形,若存在,直接寫出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線ACBD相交于點O,點EBC上的一個動點,連接DE, AC于點F.

(1)如圖①,當(dāng)時,求的值;

(2)如圖②當(dāng)DE平分∠CDB時,求證:AF=OA;

(3)如圖③,當(dāng)點EBC的中點時,過點FFGBC于點G,求證:CG=BG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是矩形ABCD的對角線AC上一點,過點PEFBC,分別交AB,CD于點EF,連接PB,PD.AE2PF8.則圖中陰影部分的面積為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+1的圖象經(jīng)過點A(﹣1,0),且與反比例函數(shù)(k0)交于點B(n,2).

(1)求一次函數(shù)的解析式

(2)求反比例函數(shù)的解析式

(3)直接寫出求當(dāng)1x6時,反比例函數(shù)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, 平分,

于點,O的外接圓.

1)求證: 是⊙O的切線;

2)若 ,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線AC、BD相交于點O,延長AB至點E,使BEAB,連接CE

1)求證:四邊形BECD是平行四邊形;

2)若∠E60°,AC,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)分別為A(﹣3,2),B(﹣4,1),C(﹣2,0).

1)若將△ABC向右平移3個單位長度,再向上平移1個單位長度,請畫出平移后的△A1B1C1;

2)若△A2B2C2與△ABC是中心對稱圖形,則對稱中心的坐標(biāo)為     

查看答案和解析>>

同步練習(xí)冊答案