【題目】如圖,點是正方形的邊延長線一點,連接,作,的延長線于,連接,當(dāng)時,作,連接,則的長為(

A.B.C.D.

【答案】C

【解析】

APEG于點P,作HMADHNCG, 易證∠GAF=GCE=45°,進(jìn)而得:AH=HF,由余角的性質(zhì),得∠GAD=GFH,得到AMH FNH(AAS),進(jìn)而得:四邊形HMDN是正方形,設(shè)HM=x,則FN=1+x,AM=2-x,列出方程,即可得到答案.

APEG于點P,作HMAD,HNCG

,

AB=AP,

∵四邊形是正方形,

AD=AP

AG平分∠CGP,

∵∠PGC-GEC=GCE,∠PGA-GEA=GAF,

∴∠GAF=GCE=45°,

AH=HF,

∵∠GAD+AGF=90°,∠GFH+AGF=90°,

∴∠GAD=GFH,

AMHFNH中,

AMH FNH(AAS)

HM=HN,AM=FN

∴四邊形HMDN是正方形,

,

,即:,

FC=1,

DF=2-1=1,

設(shè)HM=x,則FN=1+x,AM=2-x,

1+x=2-x,解得:x=,

DH=.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)yax+1a≠0)與反比例函數(shù)yk≠0)的圖象交于A、D兩點,ABx軸于點BtanAOB,OB2

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求AOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx26x+8

1)將yx26x+8化成yaxh2+k的形式;

2)畫出這個二次函數(shù)的圖象;

3)當(dāng)0x4時,y的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y1x2+bx+c與直線y2=﹣2x+m相交于A(﹣2,n)、B2,﹣3)兩點.

1)求這條拋物線的解析式;

2)若點D為拋物線的頂點,求三角形ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝中華人民共和國成立70周年,某市決定開展我和祖國共成長主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計圖表.

1)表中m   ,n   ;

2)請在圖中補全頻數(shù)直方圖;

3)甲同學(xué)的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在   分?jǐn)?shù)段內(nèi);

4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學(xué)校從中隨機確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形和四邊形都是正方形,且.

1)如圖1,連接.求證:

2)如圖2,將正方形繞著點旋轉(zhuǎn)到某一位置時恰好使得,.的度數(shù);

3)在(2)的條件下,當(dāng)正方形的邊長為時,請直接寫出正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象交反比例函數(shù)的圖象于兩點,交x軸于點C,Px軸上一個動點。

1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;

2)根據(jù)圖象回答:當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?

3)若相似,請直接寫出點P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)交于,與軸、軸分別交于點.

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中, AB=AC=10,線段BC軸上,BC=12,點B的坐標(biāo)為(-30),線段AB軸于點E,過AADBCD,動點P從原點出發(fā),以每秒3個單位的速度沿軸向右運動,設(shè)運動的時間為秒.

1)當(dāng)BPE是等腰三角形時,求的值;

2)若點P運動的同時,ABCB為位似中心向右放大,且點C向右運動的速度為每秒2個單位,ABC放大的同時高AD也隨之放大,當(dāng)以EP為直徑的圓與動線段AD所在直線相切時,求的值和此時點C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案