【題目】如圖,一次函數(shù)與反比例函數(shù)交于,與軸、軸分別交于點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)求證:.

【答案】1;(2)詳見(jiàn)解析.

【解析】

1)將點(diǎn)A的坐標(biāo)代入得到,再求出點(diǎn)B的坐標(biāo),利用點(diǎn)A、B的坐標(biāo)求出一次函數(shù)解析式即可;

2)先求出點(diǎn)CD的坐標(biāo),過(guò)點(diǎn)軸的垂線與軸交于點(diǎn),過(guò)軸的垂線與軸交于點(diǎn),利用勾股定理求出AD、BC的長(zhǎng)度即可.

解:(1)將代人,得,

∴反比例函數(shù)的表達(dá)式為

在反比例函數(shù)的圖象上,

,解得,,

,代入中,得,解得:

∴一次函數(shù)的表達(dá)式為.

2)由(1)可知,一次函數(shù)的表達(dá)式為

當(dāng)時(shí),

當(dāng)時(shí),

,

如下圖,過(guò)點(diǎn)軸的垂線與軸交于點(diǎn),過(guò)軸的垂線與軸交于點(diǎn),

,

,

∴在中,由勾股定理得:

中,由勾股定理得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+2m1x+m20有實(shí)數(shù)根.

1)求m的取值范圍;

2)若兩根為x1、x2x12+x227,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是正方形的邊延長(zhǎng)線一點(diǎn),連接,作,的延長(zhǎng)線于,連接,當(dāng)時(shí),作,連接,則的長(zhǎng)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面

的最大距離是5m

1經(jīng)過(guò)討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案如下圖

你選擇的方案是_____填方案一方案二,或方案三),B點(diǎn)坐標(biāo)是______求出你所選方案中的拋物線的表達(dá)式;

2因?yàn)樯嫌嗡畮?kù)泄洪,水面寬度變?yōu)?/span>6m求水面上漲的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 拋物線軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為  

A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生對(duì)70周年國(guó)慶閱兵儀式直播的收看情況,某校對(duì)部分學(xué)生進(jìn)行了一次調(diào)査,調(diào)査直播收看情況分三種:A.全程收看直播;B.觀看了一部分直播;C.沒(méi)有觀看.學(xué)校學(xué)生會(huì)將調(diào)査數(shù)據(jù)進(jìn)行了整理,并繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

1)本次活動(dòng)共調(diào)查了______名學(xué)生;

2)圖二中區(qū)域的圓心角的度數(shù)為______

3)補(bǔ)全圖;

4)若該校學(xué)生共有3000名,請(qǐng)估計(jì)該校學(xué)生全程收看直播的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠ACD90°ACDC,MN是過(guò)點(diǎn)A的直線,DBMN于點(diǎn)B

1)如圖,求證:BD+ABBC;

2)直線MN繞點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,當(dāng)∠BCD30°,BD時(shí),求BC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào),一艘在港口正東方向的海警船接到求救信號(hào),測(cè)得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,求海警船到大事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D在△ABC的內(nèi)部且DB=DC,點(diǎn)E,F在在△ABC的外部,FB=FAEA=EC,∠FBA=DBC=ECA.

解答下列問(wèn)題:

1)①填空:△ACE____________________;

②求證:△CDE∽△CBA

2)求的值;

3)若點(diǎn)D在∠BAC的平分線上,判斷四邊形AFDE的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案