【題目】尤秀同學(xué)遇到了這樣一個問題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.
求證:a2+b2=5c2
該同學(xué)仔細(xì)分析后,得到如下解題思路:
先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故 ,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來,再在Rt△APE,Rt△BPF中利用勾股定理計算,消去m,n即可得證

(1)請你根據(jù)以上解題思路幫尤秀同學(xué)寫出證明過程.
(2)利用題中的結(jié)論,解答下列問題:在邊長為3的菱形ABCD中,O為對角線AC,BD的交點,E,F(xiàn)分別為線段AO,DO的中點,連接BE,CF并延長交于點M,BM,CM分別交AD于點G,H,如圖2所示,求MG2+MH2的值.

【答案】
(1)

解:設(shè)PF=m,PE=n,連結(jié)EF,如圖1,

∵AF,BE是△ABC的中線,

∴EF為△ABC的中位線,AE= b,BF= a,

∴EF∥AB,EF= c,

∴△EFP∽△BPA,

,即 = ,

∴PB=2n,PA=2m,

在Rt△AEP中,∵PE2+PA2=AE2,

∴n2+4m2= b2①,

在Rt△AEP中,∵PF2+PB2=BF2,

∴m2+4n2= a2②,

①+②得5(n2+m2)= (a2+b2),

在Rt△EFP中,∵PE2+PF2=EF2,

∴n2+m2=EF2= c2,

∴5 c2= (a2+b2),

∴a2+b2=5c2;


(2)

解:∵四邊形ABCD為菱形,

∴BD⊥AC,

∵E,F(xiàn)分別為線段AO,DO的中點,

由(1)的結(jié)論得MB2+MC2=5BC2=5×32=45,

∵AG∥BC,

∴△AEG∽△CEB,

= ,

∴AG=1,

同理可得DH=1,

∴GH=1,

∴GH∥BC,

= ,

∴MB=3GM,MC=3MH,

∴9MG2+9MH2=45,

∴MG2+MH2=5.


【解析】(1)設(shè)PF=m,PE=n,連結(jié)EF,如圖1,根據(jù)三角形中位線性質(zhì)得EF∥AB,EF= c,則可判斷△EFP∽△BPA,利用相似比得到PB=2n,PA=2m,接著根據(jù)勾股定理得到n2+4m2= b2 , m2+4n2= a2 , 則5(n2+m2)= (a2+b2),而n2+m2=EF2= c2 , 所以a2+b2=5c2;(2)利用(1)的結(jié)論得MB2+MC2=5BC2=5×32=45,再利用△AEG∽△CEB可計算出AG=1,同理可得DH=1,則GH=1,然后利用GH∥BC,根據(jù)平行線分線段長比例定理得到MB=3GM,MC=3MH,然后等量代換后可得MG2+MH2=5.本題考查了相似三角形的判定:平行于三角形的一邊的直線與其他兩邊相交,所構(gòu)成的三角形與原三角形相似;有兩組角對應(yīng)相等的兩個三角形相似.也考查了三角形中位線性質(zhì)和菱形的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定,中小學(xué)生每天在校體育活動時間不低于1小時,為了解這項政策的落實情況,有關(guān)部門就“你某天在校體育活動時間是多少”的問題,在某校隨機抽查了部分學(xué)生,再根據(jù)活動時間t(小時)進(jìn)行分組(A組:t<0.5,B組:0.5≤t≤1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計圖,請根據(jù)圖中信息回答問題:

(1)此次抽查的學(xué)生數(shù)為人;
(2)補全條形統(tǒng)計圖;
(3)從抽查的學(xué)生中隨機詢問一名學(xué)生,該生當(dāng)天在校體育活動時間低于1小時的概率是
(4)若當(dāng)天在校學(xué)生數(shù)為1200人,請估計在當(dāng)天達(dá)到國家規(guī)定體育活動時間的學(xué)生有人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】濟南大明湖畔的“超然樓”被稱作“江北第一樓”,某校數(shù)學(xué)社團的同學(xué)對超然樓的高度進(jìn)行了測量,如圖,他們在A處仰望塔頂,測得仰角為30°,再往樓的方向前進(jìn)60m至B處,測得仰角為60°,若學(xué)生的身高忽略不計, ≈1.7,結(jié)果精確到1m,則該樓的高度CD為(

A.47m
B.51m
C.53m
D.54m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C是線段AB的黃金分割點(AC>BC),下列結(jié)論錯誤的是( )

A.
B.BC2=AB?BC
C.
D.≈0.618

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠A=90°,AB=ACBC=63cm,現(xiàn)沿底邊依次從下往上裁剪寬度均為3cm的矩形紙條,如圖所示,已知剪得的紙條中有一張是正方形,則這張正方形紙條是從下往上數(shù)第張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為4cm的正方形ABCD繞它的頂點A旋轉(zhuǎn)180°,頂點B所經(jīng)過的路線長為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點,點A(4,0),點B(0,3),把△ABO繞點B逆時針旋轉(zhuǎn),得△A′BO′,點A,O旋轉(zhuǎn)后的對應(yīng)點為A′,O′,記旋轉(zhuǎn)角為α.

(1)如圖①,若α=90°,求AA′的長;
(2)如圖②,若α=120°,求點O′的坐標(biāo);
(3)在(Ⅱ)的條件下,邊OA上 的一點P旋轉(zhuǎn)后的對應(yīng)點為P′,當(dāng)O′P+BP′取得最小值時,求點P′的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“綠色出行,低碳健身”已成為廣大市民的共識.某旅游景點新增了一個公共自行車停車場,6:00至18:00市民可在此借用自行車,也可將在各停車場借用的自行車還于此地.林華同學(xué)統(tǒng)計了周六該停車場各時段的借、還自行車數(shù),以及停車場整點時刻的自行車總數(shù)(稱為存量)情況,表格中x=1時的y值表示7:00時的存量,x=2時的y值表示8:00時的存量…依此類推.他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個二次函數(shù)關(guān)系.

時段

x

還車數(shù)
(輛)

借車數(shù)
(輛)

存量y
(輛)

6:00﹣7:00

1

45

5

100

7:00﹣8:00

2

43

11

n

根據(jù)所給圖表信息,解決下列問題:
(1)m= , 解釋m的實際意義:
(2)求整點時刻的自行車存量y與x之間滿足的二次函數(shù)關(guān)系式;
(3)已知9:00~10:O0這個時段的還車數(shù)比借車數(shù)的3倍少4,求此時段的借車數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上).
(1)若以C、E、F為頂點的三角形與以A、B、C為頂點的三角形相似. ①當(dāng)AC=BC=2時,AD的長為;
②當(dāng)AC=3,BC=4時,AD的長為
(2)當(dāng)點D是AB的中點時,△CEF與△CBA相似嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案