如圖,在矩形ABCD中,AD>AB,將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為MN,連結(jié)CN.若CDN的面積與CMN的面積比為1︰5,則 的值為( ).

A.2 B.4 C. D.

 

D.

【解析】

試題分析:過點(diǎn)N作NG⊥BC于G,

∵四邊形ABCD是矩形,

∴四邊形CDNG是矩形,AD∥BC,

∴CD=NG,CG=DN,∠ANM=∠CMN,

由折疊的性質(zhì)可得:AM=CM,∠AMN=∠CMN,

∴∠ANM=∠AMN,

∴AM=AN,

∴四邊形AMCN是平行四邊形,

∵AM=CM,

∴四邊形AMCN是菱形,

∵△CDN的面積與△CMN的面積比為1:5,

∴DN:CM=1:5,

設(shè)DN=x,

則AN=AM=CM=CN=5x,AD=BC=6x,CG=x,

∴BM=x,GM=4x,

在Rt△CGN中,NG=,

在Rt△MNG中,MN=

.

故選D.

考點(diǎn)矩形的性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年黑龍江省大慶市九年級下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

在面積為15的平行四邊形ABCD中,過點(diǎn)A作AE垂直于直線BC于點(diǎn)E,作AF垂直于直線CD于點(diǎn)F,若AB=5,BC=6,則CE+CF的值為( 。

A.11+ B11﹣  C11+或11﹣ D11+或1+

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市萬州區(qū)巖口復(fù)興學(xué)校九年級下學(xué)期期中命題四數(shù)學(xué)試卷(解析版) 題型:填空題

為了中考“跳繩”項(xiàng)目能得到滿分,小明練習(xí)了6次跳繩,每次跳繩的個(gè)數(shù)如下(單位:個(gè)):176, 183, 187,179,187,188.這6次數(shù)據(jù)的中位數(shù)是

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市萬州區(qū)巖口復(fù)興學(xué)校九年級下學(xué)期期中命題二數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在□ABCD中,點(diǎn)M為邊AD的中點(diǎn),過點(diǎn)C作AB的垂線交AB于點(diǎn)E,連接ME.

(1)若AM=2AE=4,BCE=30°,求□ABCD的面積;

(2)若BC=2AB,求證:∠EMD=3∠MEA.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市萬州區(qū)巖口復(fù)興學(xué)校九年級下學(xué)期期中命題二數(shù)學(xué)試卷(解析版) 題型:填空題

將長度為12厘米的線段截成兩條線a、b(a、b長度均為整數(shù).如果截成的a、b長度分別相同算作同一種截法(如:a=9,b=1和a=1,b=9為同一種截法,那么截成的a、b為對角線,以另一條c=4厘米長的線段為一邊,構(gòu)成平行四邊形的概率是__________

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市萬州區(qū)巖口復(fù)興學(xué)校九年級下學(xué)期期中命題二數(shù)學(xué)試卷(解析版) 題型:選擇題

某人騎車沿直線旅行,先前進(jìn)了千米,休息了一段時(shí)間,又原路原速返回了千米(),再掉頭沿原方向以比原速大的速度行駛,則此人離起點(diǎn)的距離與時(shí)間的函數(shù)關(guān)系的大致圖象是( .

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市萬州區(qū)巖口復(fù)興學(xué)校九年級下學(xué)期期中命題三數(shù)學(xué)試卷(解析版) 題型:解答題

已知:把RtABC和RtDEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.ACB = EDF = 90°,DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm。

如圖(2),DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CBABC勻速,在DEF移的同時(shí),點(diǎn)P從ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移。當(dāng)DEF的頂點(diǎn)D移動到AC邊上時(shí),DEF停止移動,點(diǎn)P也隨之停止移。DE與AC相交于點(diǎn)Q,連接PQ,設(shè)動時(shí)間為t(s)(0<t<4.5)。解答下列問題:

(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?

(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最小?若存在,求出y的最小值;若不存在,說明理由

(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說明理由。(圖(3)供同學(xué)們做題使用)

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市萬州區(qū)巖口復(fù)興學(xué)校九年級下學(xué)期期中命題三數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在⊙O中,直徑CD垂直于弦AB,若∠C=25°,則∠ABO的度數(shù)是( 。。

A.25° B.30° C.40° D.50°

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市九年級下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知點(diǎn)E、C在線段BF上,BE=CF,ABDE,AB=DE.

求證:ACDF.

 

 

查看答案和解析>>

同步練習(xí)冊答案