【題目】如圖,△ABC,∠ACB=90°,點(diǎn)D,E分別在AB,BC上,AC=AD,∠CDE=45°,CD與AE交于點(diǎn)F,若∠AEC=∠DEB,CE=,則CF=______.
【答案】5
【解析】試題解析延長(zhǎng)CE至G,使EC=EG,延長(zhǎng)ED至H,使EH=AE,過D作DT∥BC,交AE于T,連接GH、AH,
設(shè)∠AEC=α,則∠DEB=α,
∵∠AEC=∠DEB=α,
∴△AEC≌△DEB,
∴AC=GH,∠ACE=∠EGH=90°,
∴AC∥GH,
∴四邊形ACGH是矩形,
∴AH∥CG,
∴∠AHE=∠HEG=α,
∵AC=AD,
∴∠ACD=∠ADC,
設(shè)∠ACD=∠ADC=β,
∵∠CDE=45°,
∴β+45°+∠BDE=180°,
∴β=135°-∠BDE①,
∵△ACD是等腰三角形,
∴∠CAD=180°-2β,
∵△ACB是直角三角形,
∴∠ABC=90°-∠CAD=90°-(180°-2β)=2β-90°,
在△BDE中,由內(nèi)角和得:α+∠BDE+∠ABC=180°,
α+∠BDE+2β-90°=180°②,
把①代入②得:α+∠BDE+2(135°-∠BDE)-90°=180°,
∠BDE=α,
∴∠ADH=∠BDE=α,
∴AD=AH=AC,
∴四邊形ACGH是正方形,
∴AH=AC=2CE=,
∴AD=AC=,
∵∠BED=∠BDE=α,
∴BE=BD,
設(shè)BE=x,則BD=x,
在Rt△ACB中,由勾股定理得:AC2+BC2=AB2,
∴()2+(+x)2=(+x)2,
解得:x=,
∴BE=BD=,
∴CE=2BE=2BD,
∴AD=4BD,
∴,
∵DT∥BC,
∴△ADT∽△ABE,
∴,
∵CE=2BE,
∴,
∵DT∥CE,
∴,
在Rt△ACE中,由勾股定理得:AE=
∴ET=AE=×=,
∴EF=ET=×=,
過F作FM⊥BC于M,
tanα=,
設(shè)EM=y,則FM=2y,EF=y,
∴y=,
y=,
∴FM=2y=,EM=y=,
∴CM=CE-EM=-=,
在Rt△CFM中,由勾股定理得:CF==5;
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1所示矩形ABCD中,BC=x,CD=y,y與x滿足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形AEF的斜邊EF過C點(diǎn),M為EF的中點(diǎn),則下列結(jié)論正確的序號(hào)是___.①當(dāng)x=3時(shí),EC<EM;②當(dāng)y=9時(shí),EC>EM③當(dāng)x增大時(shí),ECCF的值增大;④當(dāng)y增大時(shí),BEDF的值不變。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點(diǎn),求的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xoy中,點(diǎn)P的坐標(biāo)為(m+1,m-1).
(1)試判斷點(diǎn)P是否在一次函數(shù)y=x-2的圖象上,并說明理由;
(2)如圖,一次函數(shù)y= -x+3的圖象與x軸、y軸分別相交于點(diǎn)A、B,若點(diǎn)P在△AOB的內(nèi)部,求m的取值范圍.
(3)若點(diǎn)P在直線AB上,已知點(diǎn)R(,),S(,)在直線y=kx+b上,b>2,+=mb, +=kb+4若>,判斷與的大小關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知有理數(shù).按要求完成下列各題.
(1)請(qǐng)把題中各數(shù)填入相應(yīng)的集合中:
①整數(shù)集合:{ …}
②負(fù)數(shù)集合:{ …}
(2)把題中各數(shù)用數(shù)軸上的點(diǎn)表示出來,并用“<“連接起來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若∠CAB=120°,⊙O的半徑等于5,求線段BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示﹣10,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距28個(gè)長(zhǎng)度單位,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉淼囊话;點(diǎn)P從點(diǎn)A出發(fā)的同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著“折線數(shù)軸”的負(fù)方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí),點(diǎn)P、Q均停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.問:
(1)用含t的代數(shù)式表示動(dòng)點(diǎn)P在運(yùn)動(dòng)過程中距O點(diǎn)的距離;
(2)P、Q兩點(diǎn)相遇時(shí),求出相遇時(shí)間及相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少?
(3)是否存在P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與Q、B兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等時(shí)?若存在,請(qǐng)直接寫出t的取值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M是正方形ABCD的邊BC上一點(diǎn),連接AM,點(diǎn)E是線段AM上一點(diǎn),∠CDE的平分線交AM延長(zhǎng)線于點(diǎn)F.
(1)如圖1,若點(diǎn)E為線段AM的中點(diǎn),BM:CM=1:2,BE=,求AB的長(zhǎng);
(2)如圖2,若DA=DE,求證:BF+DF=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中的“折竹抵地”問題:今有竹高一丈,末折抵地,去根六尺.問折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠(yuǎn),問折斷處離地面的高度是多少?設(shè)折斷處離地面的高度為x尺,則可列方程為( )
A. x2-6=(10-x)2B. x2-62=(10-x)2
C. x2+62=(10-x)2D. x2+6=(10-x)2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com