【題目】在平面直角坐標(biāo)系中有兩點(diǎn),若二次函數(shù)的圖像與線段AB只有一個(gè)交點(diǎn),則( 。

A.的值可以是B.的值可以是

C.的值不可能是-1.2D.的值不可能是-1

【答案】C

【解析】

先計(jì)算二次函數(shù)的對(duì)稱軸,首先計(jì)算函數(shù)與直線AB相交時(shí)a的取值范圍.然后分別計(jì)算函數(shù)與A,B相交時(shí)的值,并由此分別畫出函數(shù)的大致圖,根據(jù)大致圖判斷的取值范圍.對(duì)上述 a的取值范圍綜合分析即可得出a的最終取值范圍,最后依次對(duì)各選項(xiàng)進(jìn)行判斷即可.

由對(duì)稱軸可知,是該函數(shù)的對(duì)稱軸,

當(dāng)函數(shù)與直線AB相交時(shí),有解,

整理得,

根據(jù)根的判別式

解得,

因?yàn)?/span>,

所以,且a=-1時(shí),二次函數(shù)與AB有唯一的交點(diǎn)(1,4.

若函數(shù)與B點(diǎn)相交時(shí),將B(2,4)代入

解得,則此時(shí)如下圖:

函數(shù)恰好與線段AB有兩個(gè)交點(diǎn),所以根據(jù)圖象,當(dāng)時(shí)拋物線與線段AB只有一個(gè)交點(diǎn),解得;

若函數(shù)與A點(diǎn)相交時(shí),把A(2,4)代入,

解得,則此時(shí)如下圖:

函數(shù)恰好與線段有一個(gè)交點(diǎn),根據(jù)圖象當(dāng)時(shí),拋物線與線段AB也只有一個(gè)交點(diǎn),解得.

綜上所述a=-1,

A. 的值不可以是,故A錯(cuò)誤;

B. ,的值不可以是B錯(cuò)誤;

C. -1.2=,的值不可能是-1.2,C正確;

D. 的值可能是-1,故D錯(cuò)誤.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一種折疊臺(tái)燈,將其放置在水平桌面上,圖2是其簡(jiǎn)化示意圖,測(cè)得其燈臂長(zhǎng)為燈翠長(zhǎng)為,底座厚度為根據(jù)使用習(xí)慣,燈臂的傾斜角固定為

(1)當(dāng)轉(zhuǎn)動(dòng)到與桌面平行時(shí),求點(diǎn)到桌面的距離;

(2)在使用過程中發(fā)現(xiàn),當(dāng)轉(zhuǎn)到至時(shí),光線效果最好,求此時(shí)燈罩頂端到桌面的高度(參考數(shù)據(jù):,結(jié)果精確到個(gè)位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在線段AB的同側(cè)作射線AM和BN,若MAB與NBA的平分線分別交射線BN,AM于點(diǎn)E,F(xiàn),AE和BF交于點(diǎn)P.如圖,點(diǎn)點(diǎn)同學(xué)發(fā)現(xiàn)當(dāng)射線AM,BN交于點(diǎn)C;且ACB=60°時(shí),有以下兩個(gè)結(jié)論:

①∠APB=120°;AF+BE=AB.

那么,當(dāng)AMBN時(shí):

(1)點(diǎn)點(diǎn)發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)求出APB的度數(shù),寫出AF,BE,AB長(zhǎng)度之間的等量關(guān)系,并給予證明;

(2)設(shè)點(diǎn)Q為線段AE上一點(diǎn),QB=5,若AF+BE=16,四邊形ABEF的面積為32,求AQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)某電腦公司經(jīng)銷甲種型號(hào)電腦,受經(jīng)濟(jì)危機(jī)影響,電腦價(jià)格不斷下降.今年三月份的電腦售價(jià)比去年同期每臺(tái)降價(jià)1000元,如果賣出相同數(shù)量的電腦,去年銷售額為10萬元,今年銷售額只有8萬元.

1)今年三月份甲種電腦每臺(tái)售價(jià)多少元?

2)為了增加收入,電腦公司決定再經(jīng)銷乙種型號(hào)電腦,已知甲種電腦每臺(tái)進(jìn)價(jià)為3500元,乙種電腦每臺(tái)進(jìn)價(jià)為3000元,公司預(yù)計(jì)用不多于5萬元且不少于4.8萬元的資金購進(jìn)這兩種電腦共15臺(tái),有幾種進(jìn)貨方案?

3)如果乙種電腦每臺(tái)售價(jià)為3800元,為打開乙種電腦的銷路,公司決定每售出一臺(tái)乙種電腦,返還顧客現(xiàn)金元,要使(2)中所有方案獲利相同,值應(yīng)是多少?此時(shí),哪種方案對(duì)公司更有利?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標(biāo),某初中學(xué)校了解學(xué)生的創(chuàng)新意識(shí),組織了全校學(xué)生參加創(chuàng)新能力大賽,從中抽取了部分學(xué)生成績(jī),分為5組:A50~60;B60~70;C70~80;D80~90;E90~100,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖.

(1)抽取學(xué)生的總?cè)藬?shù)是   人,扇形C的圓心角是   °;

(2)補(bǔ)全頻數(shù)直方圖;

(3)該校共有2200名學(xué)生,若成績(jī)?cè)?/span>70分以下(不含70分)的學(xué)生創(chuàng)新意識(shí)不強(qiáng),有待進(jìn)一步培養(yǎng),則該校創(chuàng)新意識(shí)不強(qiáng)的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)形展唱紅歌比賽活動(dòng),九年級(jí)(1)、(2)班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)?nèi)鐖D所示.

1)根據(jù)圖示填寫下表:

班級(jí)

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

九(1

85

九(2

85

100

2)結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;

3)計(jì)算兩班復(fù)賽成績(jī)的方差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACx軸于點(diǎn)A,點(diǎn)By軸的正半軸上,ABC=60°,AB=4,BC=,點(diǎn)DAC與反比例函數(shù)的圖象的交點(diǎn).若直線BDABC的面積分成12的兩部分,則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行乒乓球單打比賽,要從中選出兩位同學(xué)打第一場(chǎng)比賽.

(1) 若確定甲打第一場(chǎng),再從其余三位同學(xué)中隨機(jī)選取一位,恰好選中乙同學(xué)的概率是

(2) 若隨機(jī)抽取兩位同學(xué),請(qǐng)用畫樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為實(shí)施農(nóng)村留守兒童關(guān)愛計(jì)劃,某校結(jié)全校各班留守兒童的人數(shù)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計(jì)圖:

1)求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)某愛心人士決定從只有2名留守兒童的這些班級(jí)中,任選兩名進(jìn)行生活資助,請(qǐng)用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個(gè)班級(jí)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案