【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FB,FC

(1)求證:四邊形ABFC是菱形;

(2)AD=6,BE=2,求四邊形ABFC的面積.

【答案】(1)證明見解析;(2)16

【解析】

(1)根據(jù)圓周角定理得到∠AEB=90°,根據(jù)線段垂直平分線的性質(zhì)、菱形的判定定理證明結(jié)論;

(2)根據(jù)菱形的性質(zhì)求出CE,根據(jù)切割線定理求出CD,根據(jù)勾股定理、菱形的面積公式計(jì)算,得到答案.

(1)證明:∵AB是圓的直徑,

∴∠AEB=90°,

EF=AE

CB是線段AF的垂直平分線,

BA=BFCA=CF,

AB=AC,

BA=BF=CA=CF,

∴四邊形ABFC是菱形;

(2)解:∵四邊形ABFC是菱形,

CE=BE=2,

由切割線定理得,CDCA=CECB,即CD(CD+6)=2×4

解得,CD1=2,CD2=-8(舍去)

AC=8,

由勾股定理得,AE==2

AF=4,

則四邊形ABFC的面積=×4×4=16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲杯中盛有m毫升紅墨水,乙杯中盛有m毫升藍(lán)墨水,從甲杯中倒出a毫升到乙杯里(0am),攪勻后,又從乙杯倒出a毫升到甲杯里,則這時(shí)( )

A. 甲杯中混入的藍(lán)墨水比乙杯中混入的紅墨水少

B. 甲杯中混入的藍(lán)墨水比乙杯中混入的紅墨水多

C. 甲杯中混入的藍(lán)墨水和乙杯中混入的紅墨水相同

D. 甲杯中混入的藍(lán)墨水與乙杯中混入的紅墨水多少關(guān)系不定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長(zhǎng)方形ABCD中,AB=6厘米,BC=12厘米,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以1厘米/秒的速度移動(dòng),點(diǎn)Q沿BC從點(diǎn)B開始向點(diǎn)C以2厘米/秒的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)的時(shí)間(0≤t≤6).

(1)當(dāng)PB=2厘米時(shí),求點(diǎn)P移動(dòng)多少秒?

(2)t為何值時(shí),△PBQ為等腰直角三角形?

(3)求四邊形PBQD的面積,并探究一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點(diǎn),直線AC:y=-x-6y軸與點(diǎn)C.點(diǎn)E是直線AB上的動(dòng)點(diǎn),過點(diǎn)EEFx軸交AC于點(diǎn)F,交拋物線于點(diǎn)G.

(1)求拋物線y=-x2+bx+c的表達(dá)式;

(2)連接GB、EO,當(dāng)四邊形GEOB是平行四邊形時(shí),求點(diǎn)G的坐標(biāo);

(3)①在y軸上存在一點(diǎn)H,連接EH、HF,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),以A、E、F、H為頂點(diǎn)的四邊形是矩形?求出此時(shí)點(diǎn)E、H的坐標(biāo);

②在①的前提下,以點(diǎn)E為圓心,EH長(zhǎng)為半徑作圓,點(diǎn)M為⊙E上一動(dòng)點(diǎn),求AM+CM的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個(gè)實(shí)數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中有兩點(diǎn)A0,1),B,0),動(dòng)點(diǎn)P在線段AB上運(yùn)動(dòng),過點(diǎn)Py軸的垂線,垂足為點(diǎn)M,作x軸的垂線,垂足為點(diǎn)N,連接MN,則線段MN的最小值為(  )

A. 1B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),直線軸和軸分別交于點(diǎn),若拋物線與直線有兩個(gè)不同的交點(diǎn),其中一個(gè)交點(diǎn)在線段上(包含,兩個(gè)端點(diǎn)),另一個(gè)交點(diǎn)在線段上(包含,兩個(gè)端點(diǎn)),則的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形 沿折疊,使落在邊的點(diǎn)處,過于點(diǎn),連接,若=6,,則的長(zhǎng)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEF中,∠EAF=45°,AGEF于點(diǎn)G,現(xiàn)將AEG沿AE折疊得到AEB,將AFG沿AF折疊得到AFD,延長(zhǎng)BEDF相交于點(diǎn)C

1)求證:四邊形ABCD是正方形;

2)連接BD分別交AE、AF于點(diǎn)M、N,將ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使ABAD重合,得到ADH,試判斷線段MN、ND、DH之間的數(shù)量關(guān)系,并說明理由.

3)若EG=4,GF=6,BM=3,求AG、MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案