【題目】合與實踐﹣﹣探究圖形中角之間的等量關系及相關問題.
問題情境:
正方形ABCD中,點P是射線DB上的一個動點,過點C作CE⊥AP于點E,點Q與點P關于點E對稱,連接CQ,設∠DAP=α(0°<α<135°),∠QCE=β.
初步探究:
(1)如圖1,為探究α與β的關系,勤思小組的同學畫出了0°<α<45°時的情形,射線AP與邊CD交于點F.他們得出此時α與β的關系是β=2α.借助這一結(jié)論可得當點Q恰好落在線段BC的延長線上(如圖2)時,α= °,β= °;
深入探究:
(2)敏學小組的同學畫出45°<α<90°時的圖形如圖3,射線AP與邊BC交于點G.請猜想此時α與β之間的等量關系,并證明結(jié)論;
拓展延伸:
(3)請你借助圖4進一步探究:①當90°<α<135°時,α與β之間的等量關系為 ;
②已知正方形邊長為2,在點P運動過程中,當α=β時,PQ的長為 .
【答案】(1)30,60;(2)α與β的關系是β=2(90°﹣α);理由見解析;(3)①β=2(α﹣90°);②6﹣2.
【解析】
初步探究:(1)連接PC,由對稱的性質(zhì)和等腰三角形的性質(zhì)得出∠QCE=∠PCE,證明△ABP≌△CBP,得出∠BAP=∠BCP,由平行線得出∠CQE=∠DAP=α,證出α+β=90°①,再證出β=2α②,即可得出結(jié)果;
深入探究:(2)連接PC,由對稱的性質(zhì)和等腰三角形的性質(zhì)得出∠QCE=∠PCE,證明△ABP≌△CBP,得出∠BAP=∠BCP=∠BAD-∠DAP=90°-α,AP=CP,證出∠BAP=∠GCE,得出∠BCG=∠GCE=90°-α,即可得出結(jié)論;
拓展延伸:(3)①連接PC,證出∠PCE=∠QCE=β,證明△ABP≌△CBP,得出∠BAP=∠BCP=∠DAP-∠BAD=α-90°,證明∠BAP=∠BCH,得出∠BCP=∠BCH=∠BAP=α-90°,即可得出結(jié)論;
②分三種情況:
當0°<α<45°時,β=2α,不合題意;
當45°<α<90°時,β=2(90°-α),得出α=β=60°,作PM⊥AD于M,證出AM=AP,DM=PM=AM,設AM=x,則CP=AP=2x,DM=PM=x,得出方程,解得:x=,得出CP=AP=2x=2-2,在△PCQ中,求出CE=CP=-1,PE=CE=3-,得出PQ=2PE=6-2;
當90°<α<135°時,β=2(α-90°),得出α=β=180°,不合題意.
解:(1)連接PC,如圖2所示:
∵點Q與點P關于點E對稱,
∴EP=EQ,
∵CE⊥AP,
∴CE垂直平分PQ,
∴CP=CQ,
∴∠QCE=∠PCE,
∵四邊形ABCD是正方形,
∴AB=BC=CD=DA,∠BAD=90°,AD∥BC,∠ABD=∠CBD=45°,
在△ABP和△CBP中,,
∴△ABP≌△CBP(SAS),
∴∠BAP=∠BCP,
∵AD∥BC,
∴∠CQE=∠DAP=α,
∵CE⊥AP,
∴∠CQE+∠QCE=90°,即α+β=90°①,
∵∠CQE+∠BAP=90°,
∴∠QCE=∠BAP=∠BCP,
∵∠BCP=∠CQE+∠CPQ,
∴β=2α②,
由①②得:α=30°,β=60°;
故答案為:30,60;
深入探究:
(2)α與β的關系是β=2(90°﹣α);理由如下:
連接PC,如圖3所示:
∵點Q與點P關于點E對稱,
∴EP=EQ,
∵CE⊥AP,
∴CE垂直平分PQ,
∴CP=CQ,
∴∠QCE=∠PCE,
∵四邊形ABCD是正方形,
∴AB=BC=CD=DA,∠BAD=90°,∠ABD=∠CBD=45°,
在△ABP和△CBP中,,
∴△ABP≌△CBP(SAS),
∴∠BAP=∠BCP=∠BAD﹣∠DAP=90°﹣α,AP=CP,
∵∠ABG=∠CEG=90°,
∴∠BAP+∠AGB=90°,∠GCE+∠CGE=90°,
∵∠AGB=∠CGE,
∴∠BAP=∠GCE,
∴∠BCG=∠GCE=90°﹣α,
∴∠QCE=2∠GCE=2(90°﹣α),
即:β=2(90°﹣α);
拓展延伸:
(3)①當90°<α<135°時,α與β之間的等量關系為β=2(α﹣90°);理由如下:
連接PC,設CE交AB于點H,如圖4所示:
∵點Q與點P關于點E對稱,
∴EP=EQ,
∵CE⊥AP,
∴CE垂直平分PQ,
∴CP=CQ,
∴∠PCE=∠QCE=β,
∵四邊形ABCD是正方形,
∴AB=BC=CD=DA,∠BAD=90°,∠ABD=∠CBD=45°,
∴∠ABP=∠CBP,
在△ABP和△CBP中,,
∴△ABP≌△CBP(SAS),
∴∠BAP=∠BCP=∠DAP﹣∠BAD=α﹣90°,
∵∠AEH=∠CBH=90°,
∴∠BAP+∠AHE=90°,∠BCH+∠BHC=90°,
∵∠AHE=∠CHB,
∴∠BAP=∠BCH,
∴∠BCP=∠BCH=∠BAP=α﹣90°,
∴∠QCE=∠PCE=2∠BCP=2(α﹣90°),
即:β=2(α﹣90°);
故答案為:β=2(α﹣90°);
②當0°<α<45°時,β=2α,不合題意;
當45°<α<90°時,β=2(90°﹣α),
∵α=β,
∴α=β=60°,
作PM⊥AD于M,如圖5所示:
∵∠APM=90°﹣α=30°,∠PDM=45°,
∴AM=AP,DM=PM=AM,
設AM=x,則CP=AP=2x,DM=PM=x,
∵AD=2,
∴x+x=2,
解得:x=﹣1,
∴CP=AP=2x=2﹣,
∵∠PCQ=2β=120°,CP=CQ,CE⊥AP,
∴∠CPE=30°,PE=QE,
∴CE=CP=﹣1,PE=CE=3﹣,
∴PQ=2PE=6﹣2;
當90°<α<135°時,β=2(α﹣90°),
∵α=β,
∴α=β=180°,不合題意;
綜上所述,在點P運動過程中,當α=β時,PQ的長為6﹣2;
故答案為:6﹣2.
科目:初中數(shù)學 來源: 題型:
【題目】堅持農(nóng)業(yè)農(nóng)村優(yōu)先發(fā)展,按照產(chǎn)業(yè)興旺、生態(tài)宜居的總要求,統(tǒng)籌推進農(nóng)村經(jīng)濟建設.洛寧縣某村出售特色水果(蘋果).規(guī)定如下:
品種 | 購買數(shù)量低于50箱 | 購買數(shù)量不低于50箱 |
新紅星 | 原價銷售 | 以八折銷售 |
紅富士 | 原價銷售 | 以九折銷售 |
如果購買新紅星40箱,紅富士60箱,需付款4300元;如果購買新紅星100箱,紅富士35箱,需付款4950元.
(1)每箱新紅星、紅富士的單價各多少元?
(2)某單位需要購置這兩種蘋果120箱,其中紅富士的數(shù)量不少于新紅星的一半,并且不超過60箱,如何購買付款最少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將正方形繞點逆時針旋轉(zhuǎn)45°后得到正方形.依此方式,繞點連續(xù)旋轉(zhuǎn)2020次,得到正方形,如果點的坐標為,那么點的坐標為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)y=的圖象與性質(zhì).小美根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=的圖象與性質(zhì)進行了探究下面是小美的探究過程,請補充完整:
(1)函數(shù)y=的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應值.
x | -2 | - | -1 | - | 1 | 2 | 3 | 4 | … | ||
y | 0 | - | -1 | - | m | … |
求m的值;
(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長度為_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,四邊形是矩形,點,點,點.以點為中心,順時針旋轉(zhuǎn)矩形,得到矩形,點的對應點分別為,記旋轉(zhuǎn)角為.
(1)如圖①,當時,求點的坐標;
(2)如圖②,當點落在的延長線上時,求點的坐標;
(3)當點落在線段上時,求點的坐標(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=-x+b與雙曲線分別相交于點A,B,C,D,已知點A的坐標為(-1,4),且AB:CD=5:2,則m=_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E為邊AD上的點,點F在邊CD上,且CF=3FD,∠BEF=90°
(1)求證:△ABE∽△DEF;
(2)若AB=4,延長EF交BC的延長線于點G,求BG的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某倉儲中心有一個坡度為i=1:2的斜坡AB,頂部A處的高AC為4米,B、C在同一水平地面上,其橫截面如圖.
(1)求該斜坡的坡面AB的長度;
(2)現(xiàn)有一個側(cè)面圖為矩形DEFG的長方體貨柜,其中長DE=2.5米,高EF=2米,該貨柜沿斜坡向下時,點D離BC所在水平面的高度不斷變化,求當BF=3.5米時,點D離BC所在水平面的高度DH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com