【題目】某公司生產(chǎn)某環(huán)保產(chǎn)品的成本為每件40元,經(jīng)過市場調研發(fā)現(xiàn):這件產(chǎn)品在未來兩個月的日銷量與時間的關系如圖所示未來兩個月該商品每天的價格與時間的函數(shù)關系式為:

根據(jù)以上信息,解決以下問題:

請分別確定時該產(chǎn)品的日銷量與時間之間的函數(shù)關系式;

請預測未來第一月日銷量利潤的最小值是多少?第二個月日銷量利潤的最大值是多少?

為創(chuàng)建“兩型社會”,政府決定大力扶持該環(huán)保產(chǎn)品的生產(chǎn)和銷售,從第二個月開始每銷售一件該產(chǎn)品就補貼a有了政府補貼以后,第二個月內該產(chǎn)品日銷售利潤隨時間的增大而增大,求a的取值范圍.

【答案】;時,的最大值為元;(3)時,Wt的增大而增大.

【解析】

利用待定系數(shù)法即可解決問題;

分別構建二次函數(shù),利用二次函數(shù)的性質即可解決問題;

構建二次函數(shù),利用二次函數(shù)的性質即可解決問題;

解:時,設,則有,

解得,

時,設,則有 ,

解得,

由題意,

時,有最小值,

時,的最大值為

由題意,

對稱軸

,

的取值范圍在對稱軸的左側時Wt的增大而增大,

,

時,Wt的增大而增大.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,ABAC,CB=CD.延長CA至點E,使AE=AC;延長CB至點F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點N.

(1)求證:AD=AF;

(2)求證:BD=EF;

(3)試判斷四邊形ABNE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

(進價、售價均保持不變,利潤=銷售收入-進貨成本)

(1)A,B兩種型號的電風扇的銷售單價.

(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30,A種型號的電風扇最多能采購多少臺?

(3)(2)的條件下超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為打好精準脫貧攻堅戰(zhàn),精準施策,幫扶脫貧,某行政部門對其結對幫扶的村民合作社種植的三種特色農產(chǎn)品A、B、C5月份的銷售情況進行調查統(tǒng)計,繪制成如下兩個統(tǒng)計圖(均不完整).請你結合圖中的信息,解答下列問題:

(1)該村民合作社5月份共銷售這三種特色農產(chǎn)品多少噸?

(2)該村民合作社計劃6月份銷售A、B、C三種特色農產(chǎn)品共500噸,根據(jù)該村民合作社5月份的銷售情況,問該村民合作社應準備C品種特色農產(chǎn)品多少噸比較合理?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)與一次函數(shù),令.

(1)若的函數(shù)圖象相交于軸上的同一點.

①求的值;

②當為何值時,的值最小,試求出該最小值.

(2)當時,的增大而減小,請寫出的大小關系并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=54°∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合,則∠OEC   度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在三角形紙片ABC中,,,將該紙片沿過點B的直線折疊,使點A落在斜邊BC上的一點E處,折痕記為如圖,剪去后得到雙層如圖,再沿著過某頂點的直線將雙層三角形剪開,使得展開后的平面圖形中有一個是平行四邊形,則所得平行四邊形的周長為______cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)請判斷BD、CE有何大小、位置關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課本目標與評定中有這樣一道思考題:如圖鋼架中∠A=20°,焊上等邊的鋼條P1P2,P2P3,P3P4P4P5來加固鋼架,若P1A=P1P2,問這樣的鋼條至多需要多少根?

1)請將下列解答過程補充完整:

答案:∵∠A=20°P1A=P1P2,∴∠P1P2A=   .

P1P2=P2P3=P3P4=P4P5,∴∠P2P1P3=P2P3P1=40°,

同理可得,∠P3P2P4=P3P4P2=60°,∠P4P3P5=P4P5P3=   ,

∴∠BP4P5=CP5P4=100°90°,

∴對于射線P4B上任意一點P6(點P4除外),P4P5P5P6,

∴這樣的鋼架至多需要   .

2)繼續(xù)探究:當∠A=15°時,這樣的鋼條至多需要多少根?

3)當這樣的鋼條至多需要8根時,探究∠A的取值范圍.

查看答案和解析>>

同步練習冊答案