【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點E,使AE=AC;延長CB至點F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說明理由.
【答案】(1) (2)證明見解析;(3)四邊形ABNE是正方形.理由見解析.
【解析】
(1)由等腰直角三角形的性質(zhì)得出∠ABC=∠ACB=45°,求出∠ABF=135°,∠ABF=∠ACD,證出BF=CD,由SAS證明△ABF≌△ACD,即可得出AD=AF;
(2)由(1)知AF=AD,△ABF≌△ACD,得出∠FAB=∠DAC,證出∠EAF=∠BAD,由SAS證明△AEF≌△ABD,得出對應(yīng)邊相等即可;
(3)由全等三角形的性質(zhì)得出得出∠AEF=∠ABD=90°,證出四邊形ABNE是矩形,由AE=AB,即可得出四邊形ABNE是正方形.
(1)證明:∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∴∠ABF=135°.
∵∠BCD=90°,
∴∠ACD=135°.
∴∠ABF=∠ACD.
∵CB=CD,CB=BF,
∴BF=CD.
在△ABF和△ACD中,
∴△ABF≌△ACD,
∴AD=AF;
(2)證明:由(1)知AF=AD,△ABF≌△ACD,
∴∠FAB=∠DAC.
∵∠BAC=90°,
∴∠EAB=∠BAC=90°,
∴∠EAF=∠BAD.
∵AB=AC,AC=AE,
∴AB=AE.
在△AEF和△ABD中,
∴△AEF≌△ABD.
∴BD=EF.
(3)解:四邊形ABNE是正方形.理由:
∵CD=CB,∠BCD=90°,
∴∠CBD=45°.
∵∠ABC=45°,
∴∠ABD=90°.
∴∠ABN=90°.
由(2)知∠EAB=90°,△AEF≌△ABD,
∴∠AEF=∠ABD=90°.
∴四邊形ABNE是矩形.
又∵AE=AB,
∴矩形ABNE是正方形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校的某社團組織了一次智力競賽,共a、b、c三題,每題或者得滿分或者得0分,其中題a滿分10分,題b、題c滿分均為15分.競賽結(jié)果,每個學(xué)生至少答對了一題,三題全答對的有2人,答對其中兩道題的有14人,答對題a的人數(shù)與答對題b的人數(shù)之和為29,答對題a的人數(shù)與答對題c的人數(shù)之和為27,答對題b的人數(shù)與答對題c的人數(shù)之和為20,則這個社團的平均成績是_____分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某園林部門決定利用現(xiàn)有的349盆甲種花卉和295盆乙種花卉搭配A. B兩種園藝造型共50個,擺放在迎賓大道兩側(cè)。已知搭配一個A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個B種造型需甲種花卉5盆,乙種花卉9盆。
(1)某校九年級某班課外活動小組承接了這個園藝造型搭配方案的設(shè)計,問符合題意的搭配方案有幾種?請你幫助設(shè)計出來;
(2)若搭配一個A種造型的成本是200元,搭配一個B種造型的成本是360元,試說明(1)中哪種方案成本最低,最低成本是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)定義:直角三角形兩直角邊的平方和等于斜邊的平方。如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=___.
(2)應(yīng)用:已知正方形ABCD的邊長為4,點P為AD邊上的一點,AP=AD,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,兩邊PE、PF分別交AB、AC于點E、F,給出以下四個結(jié)論:
①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF=S△ABC;④EF=AP.上述結(jié)論始終正確的有( )
②③
A.①②③④B.①②③C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺進價分別為190元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1770元 |
第二周 | 4臺 | 10臺 | 3060 元 |
(進價、售價均保持不變,利潤=銷售收入一進貨成本)
(1)求A、B兩種型號的電風(fēng)扇的銷售單價;
(2)若超市準(zhǔn)備用不多于5300元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo),若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市救災(zāi)物資儲備倉庫共存儲了A,B,C三類救災(zāi)物資,下面的統(tǒng)計圖是三類物資存儲量的不完整統(tǒng)計圖.
(1)求A類物資的存儲量,并將兩個統(tǒng)計表補充完整;
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將A、B兩類物資全部運往某災(zāi)區(qū).已知甲種貨車最多可裝A類物資10噸和B類物資40噸,乙種貨車最多可裝A、B類物資各20噸,則物資儲備倉庫安排甲、乙兩種貨車有幾種方案?請你幫助設(shè)計出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,P為BC上一點,D為AC上一點,且∠APD=60°,BP=1,CD=,則△ABC的邊長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)某環(huán)保產(chǎn)品的成本為每件40元,經(jīng)過市場調(diào)研發(fā)現(xiàn):這件產(chǎn)品在未來兩個月天的日銷量件與時間天的關(guān)系如圖所示未來兩個月天該商品每天的價格元件與時間天的函數(shù)關(guān)系式為:
根據(jù)以上信息,解決以下問題:
請分別確定和時該產(chǎn)品的日銷量件與時間天之間的函數(shù)關(guān)系式;
請預(yù)測未來第一月日銷量利潤元的最小值是多少?第二個月日銷量利潤元的最大值是多少?
為創(chuàng)建“兩型社會”,政府決定大力扶持該環(huán)保產(chǎn)品的生產(chǎn)和銷售,從第二個月開始每銷售一件該產(chǎn)品就補貼a元有了政府補貼以后,第二個月內(nèi)該產(chǎn)品日銷售利潤元隨時間天的增大而增大,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com