【題目】某班開展勤儉節(jié)約的活動,對每個同學的一天的消費情況進行調(diào)查,得到統(tǒng)計圖如圖所示:

1)求該班的總人數(shù);

2)將條形圖補充完整,并寫出消費金額的中位數(shù);

3)該班這一天平均每人消費多少元?

【答案】150;(2)圖詳見解析,12.5;(3)該班這一天平均每人消費13.1元.

【解析】

1)根據(jù)C類有14人,占28%,即可求得該班的總人數(shù);(2)根據(jù)(1)中的答案可以求得消費10元的人數(shù),從而可以將條形統(tǒng)計圖補充完整,進而求得消費金額的中位數(shù);(3)根據(jù)加權平均數(shù)的計算方法可以求得該班這一天平均每人消費的金額.

1)由題意可得,

該班的總人數(shù)為:14÷28%=50

即該班的總人數(shù)是50;

2)消費10元的有:50-9-14-7-4=16(人),

補充完整的統(tǒng)計圖如圖所示,

消費金額的中位數(shù)是:=12.5;

3)由題意可得,

該班這一天平均每人消費:=13.1(元),

即該班這一天平均每人消費13.1元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知四邊形ABCD是正方形,對角線AC、BD相交于點E,以點E為頂點作正方形EFGH

1)如圖1,點A、D分別在EHEF上,連接BH、AF,直接寫出BHAF的數(shù)量關系;

2)將正方形EFGH繞點E順時針方向旋轉.

如圖2,判斷BHAF的數(shù)量關系,并說明理由;

如果四邊形ABDH是平行四邊形,請在備用圖中補全圖形;如果四方形ABCD的邊長為,求正方形EFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓O的直徑,C為AO的中點,CDAB交半圓于點D,以C為圓心,CD為半徑畫弧交AB于E點,若AB=4,則圖中陰影部分的面積是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,對角線AC,BD相交于點O,點E的內(nèi)部,連接EBEC,說明:

1

2;

3)若,,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具商店銷售功能相同的兩種品牌的計算器,購買2個A品牌和1個B品牌的計算器共需122元;購買1個A品牌和2個B品牌的計算器共需124元.

(1)求這兩種品牌計算器的單價;

(2)學校開學前夕,該商店舉行促銷活動,具體辦法如下:購買A品牌計算器按原價的九折銷售,購買B品牌計算器超出10個以上超出的部分按原價的八折銷售,設購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1、y2關于x的函數(shù)關系式;

小明準備聯(lián)系一部分同學集體購買同一品牌的計算器,若購買計算器的數(shù)量超過10個,問購買哪種品牌的計算器更合算?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C,D均在格點上,ABCD相交于點E.

(Ⅰ)AB的長等于   ;

(Ⅱ)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在抗洪搶險救災中,某地糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉移到?jīng)]有受洪水威脅的A,B兩倉庫,已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為60噸,B庫的容量為120噸,從甲、乙兩庫到A、B兩庫的路程和運費如表(表中/千米表示每噸糧食運送1千米所需人民幣)

路程(千米)

運費(元/千米)

甲庫

乙?guī)?/span>

甲庫

乙?guī)?/span>

A

20

15

12

12

B

25

20

10

8

若從甲庫運往A庫糧食x噸,

(Ⅰ)填空(用含x的代數(shù)式表示):

①從甲庫運往B庫糧食   噸;

②從乙?guī)爝\往A庫糧食   噸;

③從乙?guī)爝\往B庫糧食   噸;

(Ⅱ)寫出將甲、乙兩庫糧食運往A、B兩庫的總運費y(元)與x(噸)的函數(shù)關系式,并求出當從甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在線段AB上,AC=8 cm,CB=6 cm,點M,N分別是AC,BC的中點.

(1)求線段MN的長.

(2)若C為線段AB上任一點,滿足AC+CB=a cm,其他條件不變,你能猜想MN的長度嗎?(用含a的代數(shù)式表示)并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某花店準備購進甲、乙兩種花卉,若購進甲種花卉20盆,乙種花卉50盆,需要720元;若購進甲種花卉40盆,乙種花卉30盆,需要880元.

(1)求購進甲、乙兩種花卉,每盆各需多少元?

(2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準備拿出800元全部用來購進這兩種花卉,設購進甲種花卉x盆,全部銷售后獲得的利潤為W元,求W與x之間的函數(shù)關系式;

(3)在(2)的條件下,考慮到顧客需求,要求購進乙種花卉的數(shù)量不少于甲種花卉數(shù)量的6倍,且不超過甲種花卉數(shù)量的8倍,那么該花店共有幾種購進方案?在所有的購進方案中,哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

同步練習冊答案