【題目】如圖22,將—矩形OABC放在直角坐際系中,O為坐標(biāo)原點(diǎn).點(diǎn)A在x軸正半軸上.點(diǎn)E是邊AB上的—個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、N重合),過(guò)點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F。
【1】若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求的值:
【2】若OA=2.0C=4.問(wèn)當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形OAEF的面積最大.其最大值為多少?
【答案】
【1】∵點(diǎn)E、F在函數(shù)的圖象上,
∴設(shè)E(, ),F(xiàn)(,),>0,>0,
∴S1=,S2=。∵S1+S2=2,∴ !!4分
【2】∵四邊形OABC為矩形,OA=2,OC=4,∴設(shè) E(,2), F(4,)!郆E=4-,BF=2-。
∴S△BEF= ,S△OCF= ,S矩形OABC=2×4=8,
∴S四邊形OAEF=S矩形OABC-S△BEF-S△OCF= 8-()-=。
∴當(dāng)=4時(shí),S四邊形OAEF=5!郃E=2。
∴當(dāng)點(diǎn)E運(yùn)動(dòng)到AB的中點(diǎn)時(shí),四邊形OAEF的面積最大,最大值是5!10分
【解析】(1)設(shè)E(x1,),F(xiàn)(x2,),x1>0,x2>0,根據(jù)三角形的面積公式得到S1=S2= k,利用S1+S2=2即可求出k;
(2)設(shè)E(,2),F(4,),利用S四邊形OAEF=S矩形OABC-S△BEF-S△OCF=- (k-4)2+5,根據(jù)二次函數(shù)的最值問(wèn)題即可得到當(dāng)k=4時(shí),四邊形OAEF的面積有最大值,S四邊形OAEF=5,此時(shí)AE=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們給出如下定義:有一組相鄰內(nèi)角相等的凸四邊形叫做“等鄰角四邊形”.請(qǐng)解答下列問(wèn)題:
(1)“梯形、長(zhǎng)方形、正方形”中“等鄰角四邊形”是____________;
(2)如圖,在中,,點(diǎn)在上,且,點(diǎn)、分別為、的中點(diǎn),連接并延長(zhǎng)交于點(diǎn).求證:四邊形是“等鄰角四邊形”;
(3)已知:在“等鄰角四邊形”中,,,,,請(qǐng)畫(huà)出相應(yīng)圖形,并直接寫(xiě)出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,D是BC的中點(diǎn),以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點(diǎn)F,交AC于點(diǎn)G.
(1)若∠BAC=50°,求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF;
(3)試判斷線段EF、BF與AC三者之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)如圖,熱氣球的探測(cè)器顯示,從熱氣球A處看一棟高樓頂部B的仰角為30°,看這棟高樓底部C的俯角為65°,熱氣球與高樓的水平距離AD為120m.求這棟高樓的高度.(結(jié)果用含非特殊角的三角函數(shù)及根式表示即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A.B兩點(diǎn),以AB為邊在第一象限內(nèi)作正方形ABCD,頂點(diǎn)D在雙曲線y=kx-1上,將該正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,頂點(diǎn)C恰好落在雙曲線y=kx-1上,則a的值是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)在數(shù)學(xué)實(shí)踐課中測(cè)量路燈的高度.如圖,已知他的目高為1.5米,他先站在處看路燈頂端的仰角為,向前走3米后站在處,此時(shí)看燈頂端的仰角為(),則燈頂端到地面的距離約為( )
A.3.2米B.4.1米C.4.7米D.5.4米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為,在正方形外,,過(guò)作于,直線,交于點(diǎn),直線交直線于點(diǎn),則下列結(jié)論正確的是( )
①;②;③;
④若,則
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一張長(zhǎng)方形紙片ABCD沿對(duì)角線BD對(duì)折,使得點(diǎn)C落在點(diǎn)F處,DF交AB于E,AD=8,AB=16.
(1)求證:DE=BE;
(2)求S△BEF;
(3)若M、N分別為線段CD、DB上的動(dòng)點(diǎn),直接寫(xiě)出(NC+NM)的最小值___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+mx+n的圖象經(jīng)過(guò)點(diǎn)P(﹣3,1),對(duì)稱軸是直線x=﹣1.
(1)求m,n的值;
(2)x取什么值時(shí),y隨x的增大而減小?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com