【題目】如圖22,將—矩形OABC放在直角坐際系中,O為坐標(biāo)原點(diǎn).點(diǎn)A在x軸正半軸上.點(diǎn)E是邊AB上的—個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、N重合),過(guò)點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F。

1若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求的值:

2若OA=2.0C=4.問(wèn)當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形OAEF的面積最大.其最大值為多少?

【答案】

1∵點(diǎn)E、F在函數(shù)的圖象上,

∴設(shè)E(, ),F(xiàn)(),>0,>0,

∴S1=,S2=。∵S1+S2=2,∴ !!4分

2∵四邊形OABC為矩形,OA=2,OC=4,∴設(shè) E(,2), F(4,)!郆E=4-,BF=2-。

∴S△BEF= ,S△OCF= ,S矩形OABC=2×4=8,

∴S四邊形OAEF=S矩形OABC-S△BEF-S△OCF= 8-()-=。

∴當(dāng)=4時(shí),S四邊形OAEF=5!郃E=2。

∴當(dāng)點(diǎn)E運(yùn)動(dòng)到AB的中點(diǎn)時(shí),四邊形OAEF的面積最大,最大值是5!10分

【解析】(1)設(shè)E(x1,),F(xiàn)(x2,),x1>0,x2>0,根據(jù)三角形的面積公式得到S1=S2= k,利用S1+S2=2即可求出k;

(2)設(shè)E(,2),F(4,),利用S四邊形OAEF=S矩形OABC-SBEF-SOCF=- (k-4)2+5,根據(jù)二次函數(shù)的最值問(wèn)題即可得到當(dāng)k=4時(shí),四邊形OAEF的面積有最大值,S四邊形OAEF=5,此時(shí)AE=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們給出如下定義:有一組相鄰內(nèi)角相等的凸四邊形叫做“等鄰角四邊形”.請(qǐng)解答下列問(wèn)題:

(1)“梯形、長(zhǎng)方形、正方形”中“等鄰角四邊形”是____________;

(2)如圖,在中,,點(diǎn)上,且,點(diǎn)分別為、的中點(diǎn),連接并延長(zhǎng)交于點(diǎn).求證:四邊形是“等鄰角四邊形”;

(3)已知:在“等鄰角四邊形”中,,,,,請(qǐng)畫(huà)出相應(yīng)圖形,并直接寫(xiě)出的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,DBC的中點(diǎn),以AC為腰向外作等腰直角ACE,∠EAC=90°,連接BE,交AD于點(diǎn)F,交AC于點(diǎn)G

1)若∠BAC=50°,求∠AEB的度數(shù);

2)求證:∠AEB=ACF;

3)試判斷線段EFBFAC三者之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】6分)如圖,熱氣球的探測(cè)器顯示,從熱氣球A處看一棟高樓頂部B的仰角為30°,看這棟高樓底部C的俯角為65°,熱氣球與高樓的水平距離AD120m.求這棟高樓的高度.(結(jié)果用含非特殊角的三角函數(shù)及根式表示即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A.B兩點(diǎn),以AB為邊在第一象限內(nèi)作正方形ABCD,頂點(diǎn)D在雙曲線y=kx-1上,將該正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,頂點(diǎn)C恰好落在雙曲線y=kx-1上,則a的值是( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在數(shù)學(xué)實(shí)踐課中測(cè)量路燈的高度.如圖,已知他的目高1.5米,他先站在處看路燈頂端的仰角為,向前走3米后站在處,此時(shí)看燈頂端的仰角為),則燈頂端到地面的距離約為(

A.3.2B.4.1C.4.7D.5.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為在正方形外,,過(guò),直線交于點(diǎn),直線交直線于點(diǎn),則下列結(jié)論正確的是(

;②;③;

④若,則

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張長(zhǎng)方形紙片ABCD沿對(duì)角線BD對(duì)折,使得點(diǎn)C落在點(diǎn)F處,DFABEAD=8,AB=16.

1)求證:DE=BE

2)求SBEF;

3)若M、N分別為線段CDDB上的動(dòng)點(diǎn),直接寫(xiě)出(NC+NM)的最小值___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yx2+mx+n的圖象經(jīng)過(guò)點(diǎn)P(﹣31),對(duì)稱軸是直線x=﹣1

1)求mn的值;

2x取什么值時(shí),yx的增大而減小?

查看答案和解析>>

同步練習(xí)冊(cè)答案