【題目】某書店老板去圖書批發(fā)市場購買某種圖書.第一次用1200元購書若干本,并按該書定價7元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發(fā)價已比第一次提高了20%,他用1500元所購該書數(shù)量比第一次多10本.當(dāng)按定價7元售出150本時,出現(xiàn)滯銷,便以定價的5折售完剩余的書.
(1)每本書第一次的批發(fā)價是多少錢?
(2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其它因素)?若賠錢,賠多少?若賺錢,賺多少?
【答案】(1) 每本書第一次的批發(fā)價是5元;(2) 該老板這兩次售書總體上是賺錢了, 賺了380元.
【解析】
(1)設(shè)每本書第一次的批發(fā)價是x元,根據(jù)第一次用1200元購書若干本,第二次購書時,每本書的批發(fā)價已比第一次提高了20%,他用1500元所購該書的數(shù)量比第一次多10本,列出方程,求出x的值即可得出答案;
(2)根據(jù)(1)先求出第一次和第二次購書數(shù)目,再根據(jù)賣書數(shù)目×(實際售價-當(dāng)次進(jìn)價)求出二次賺的錢數(shù),再分別相加即可得出答案.
(1)設(shè)每本書第一次的批發(fā)價是x元,依題意得
解得 x=5
經(jīng)檢驗,x=5是原方程的解.
答:每本書第一次的批發(fā)價是5元.
(2)第一次購買的本數(shù)為:1200÷5=240
第二次購買的本數(shù)為:240+10=250
第二次購買的批發(fā)價為:5×(1+20%)=6
240×(7-5)+150×(7-6)+(250-150)×(7×0.5-6)=380
答:該老板這兩次售書總體上是賺錢了, 賺了380元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l1:與坐標(biāo)軸交于A,B兩點,直線l2:(≠0)與坐標(biāo)軸交于點C,D.
(1)求點A,B的坐標(biāo);
(2)如圖,當(dāng)=2時,直線l1,l2與相交于點E,求兩條直線與軸圍成的△BDE的面積;
(3)若直線l1,l2與軸不能圍成三角形,點P(a,b)在直線l2:(k≠0)上,且點P在第一象限.
①求的值;
②若,,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,請判斷AB與EF的位置關(guān)系,并說明理由.
解: ,理由如下:
∵AB∥CD,
∴∠B=∠BCD,( )
∵∠B=70°,
∴∠BCD=70°,( )
∵∠BCE=20°,
∴∠ECD=50°,
∵∠CEF=130°,
∴ + =180°,
∴EF∥ ,( )
∴AB∥EF.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明到某服裝商場進(jìn)行社會調(diào)查,了解到該商場為了激勵營業(yè)員的工作積極性,實行“月總收入=基本工資+計件獎金”的方法,并獲得如下信息:
營業(yè)員 | 小麗 | 小華 |
月銷售件數(shù)(件) | 200 | 150 |
月總收入(元) | 1400 | 1250 |
假設(shè)營業(yè)員的月基本工資為x元,銷售每件服裝獎勵y元.
(1)求x、y的值;
(2)若營業(yè)員小麗某月的總收入不低于1800元,那么小麗當(dāng)月至少要賣服裝多少件?
(3)商場為了多銷售服裝,對顧客推薦一種購買方式:如果購買甲3件,乙2件,丙1件共需315元;如果購買甲1件,乙2件,丙3件共需285元.某顧客想購買甲、乙、丙各一件共需 元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結(jié)果_________ .
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點E,F(xiàn),G,連接ED,DG.
(1)請判斷四邊形EBGD的形狀,并說明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,點H是BD上的一個動點,求HG+HC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是矩形ABCD的對角線的交點,E,F(xiàn),G,H分別是OA,OB,OC,OD上的點,且AE=BF=CG=DH.
(1)求證:四邊形EFGH是矩形;
(2)若E,F(xiàn),G,H分別是OA,OB,OC,OD的中點,且DG⊥AC,OF=2cm,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=﹣x2+bx+c的圖象過點(﹣1,﹣8),(0,﹣3).
(1)求此二次函數(shù)的表達(dá)式,并用配方法將其化為y=a(x﹣h)2+k的形式;
(2)畫出此函數(shù)圖象的示意圖.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com