【題目】如圖,在平面直角坐標(biāo)系中,⊙A的半徑為1,圓心A點的坐標(biāo)為(2,1).直線OM是一次函數(shù)y=-x的圖象.將直線OM沿x軸正方向平行移動.
(1)填空:直線OM與x軸所夾的銳角度數(shù)為 °;
(2)求出運動過程中⊙A與直線OM相切時的直線OM的函數(shù)關(guān)系式;(可直接用(1)中的結(jié)論)
(3)運動過程中,當(dāng)⊙A與直線OM相交所得的弦對的圓心角為90°時,直線OM的函數(shù)關(guān)系式.
【答案】(1)45;(2) y=-x+3-或y=-x+3+;(3) y=-x+2或y=-x+4.
【解析】
(1)利用直線y=x上點的坐標(biāo)特征易得直線y=x為第二、三四象限的角平分線,則直線OM與x軸所夾的銳角度數(shù)為45°;
(2)如圖1中,設(shè)⊙A與x軸相切于點C,平移后的直線OM與⊙A相切于點E,交x軸于P,連接AE,AC,作ED⊥AC于D.求出點E坐標(biāo),利用待定系數(shù)法即可解決問題,再根據(jù)對稱性解決另一種相切情形;
(3)當(dāng)平移后的直線OM經(jīng)過點C(⊙A與x軸的切點)時,弦EC所對的圓心角為90°,此時直線EC的解析式為y=x+2.再根據(jù)對稱性解決另一種情形.
解:(1)∵直線y=-x上點到x軸和y軸的距離相等,
∴直線y=x為第二、四象限的角平分線,
∴直線OM與x軸所夾的銳角度數(shù)為45°;
故答案為45.
(2)如圖1中,設(shè)⊙A與x軸相切于點C,平移后的直線OM與⊙A相切于點E,交x軸于P,連接AE,AC,作ED⊥AC于D.
∵∠OPE=45°,
∴∠EPC=135°,
∵∠AEP=∠ACP=90°,
∴∠EAD=45°,
∵AE=1,
∴AD=DE=
∴CD=1-
∴E(2-,1-),
設(shè)直線PE的解析式為y=-x+b,
則有1-=-(2-)+b,
∴b=3-,
∴平移后直線OM的解析式為y=-x+3-.
根據(jù)對稱性可知,直線PE向右平移個單位直線與⊙A相切于點E′,此時直線OM的解析式為y=-x+3+.
綜上所述,運動過程中⊙A與直線OM相切時的直線OM的函數(shù)關(guān)系式為y=-x+3-或y=-x+3+.
(3)當(dāng)平移后的直線OM經(jīng)過點C(⊙A與x軸的切點)時,弦EC所對的圓心角為90°,此時直線EC的解析式為y=-x+2.
根據(jù)對稱性可知,當(dāng)直線EC繼續(xù)向右平移2個單位,與⊙A交于點D,E′,此時∠DAE′=90°,此時直線的解析式為y=-x+4.
綜上所述,滿足條件的直線OM的解析式為:y=-x+2或y=-x+4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F、G、H分別為矩形ABCD的邊AB、BC、CD、DA的中點,連接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,則AB的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AM為⊙O的切線,A為切點.過⊙O上一點B作BD⊥AM于點D,BD交⊙O于點C,OC平分∠AOB.
(1)求∠AOB的度數(shù);
(2)當(dāng)⊙O的半徑為4cm時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知:AB=24cm,CD=8cm.
(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡).
(2)求殘片所在圓的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△ECD都是等邊三角形,△EBC可以看作是△DAC經(jīng)過平移、軸對稱或旋轉(zhuǎn)得到.
(1)如圖1,當(dāng)B,C,D在同一直線上,AC交BE于點F,AD交CE于點G,求證:CF=CG;
(2)如圖2,當(dāng)△ABC繞點C旋轉(zhuǎn)至AD⊥CD時,連接BE并延長交AD于M,求證:MD=ME.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+m與雙曲線相交于A(2,1)、B兩點.
(1)求m及k的值;
(2)不解關(guān)于x、y的方程組直接寫出點B的坐標(biāo);
(3)直線y=﹣2x+4m經(jīng)過點B嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織七、八、九年級學(xué)生參加全區(qū)作文比賽,該校將收到的參賽作文進(jìn)行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.
(1)此次參賽的作文篇數(shù)共有 篇;
(2)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應(yīng)的圓心角是 度,并補(bǔ)全條形統(tǒng)計圖;
(3)經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎作文中任選兩篇刊登在?,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在?系母怕剩
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com