【題目】(8分)將一張長方形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.
(1)求∠1的度數(shù);
(2)求證:△EFG是等腰三角形.
【答案】(1)∠1=52°;(2)證明見解析.
【解析】
試題(1)圖形的折疊中隱含著角和線段的相等,由題, 將一張矩形紙條ABCD按如圖所示沿EF折疊,∠FEC=64o, ∠FEC′=64o,即∠BEC′=180o-∠FEC-∠FEC′= 52o,因為AD∥BC,所以∠1=∠AGC′=∠BEC′=52o;
(2)只要找到兩個底角相等即可,因為∠FEC=64o,AD∥BC,所以∠GFE=∠FEC=64o,又因為∠FEC′=64o,所以GF=GE, 即△EFG是等腰三角形.
試題解析:(1)如圖:∵∠FEC=64o,據(jù)題意可得:∠FEC′=64o,
∴∠BEC′=180o-∠FEC-∠FEC′= 52o,
又∵AD∥BC,
∴∠1="∠AGC′=" ∠BEC′=52o.
(2)證明:∵∠FEC=64o,AD∥BC,
∴∠GFE=∠FEC=64o,
又∵∠FEC′=64o,
∴∠FEG=∠GEF=64o,
∴GF=GE,即△EFG是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點D關(guān)于直線AE的對稱點為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,若α=45°,點E在BC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB的解析式為y=2x+5,與y軸交于點A,與x軸交于點B,點P為線段AB上的一個動點,作PE⊥y軸于點E,PF⊥x軸于點F,連接EF,則線段EF的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關(guān)系?試證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點,連接DE、BF、BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
(1)已知:如圖1,在正方形ABCD中,點E、H分別在BC、AB上,若AE⊥DH于點O,求證AE=DH;
類比探究:
(2)如圖2,在正方形ABCD中,點H,E,G,F(xiàn)分別在AB,BC,CD,DA上,若EF⊥HG于點O,探究線段EF與HG的數(shù)量關(guān)系,并說明理由;
拓展應(yīng)用:
(3)已知,如圖3,在(2)問條件下,若BC=4,E為BC的中點,AF= AD,求HG的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中,錯誤的有( )
①在Rt△ABC中,已知兩邊長分別為3和4,則第三邊的長為5;②△ABC的三邊長分別為a,b,c,若a2+b2=c2,則∠A=90°;③在△ABC中,若∠A∶∠B∶∠C=1∶5∶6,則△ABC是直角三角形;④若三角形的三邊長之比為3∶4∶5,則該三角形是直角三角形.
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對x,y定義一種新運算T,規(guī)定: (其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如: ,已知T(1,﹣1)=﹣2,T(4,2)=1
(1)求a,b的值;
(2)若關(guān)于m的不等式組 恰好有4個整數(shù)解,求實數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=14,BC=8,點E為邊BC上一點,且BE=5,將紙片沿過點E的一條直線l翻折,使點B落在直線CD上,若l與矩形的邊的另一個交點為F,則EF的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com