【題目】某市教育行政部門為了了解初一學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機抽樣調(diào)查了某校初一學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖)
請你根據(jù)圖中提供的信息,回答下列問題:
(1)扇形統(tǒng)計圖中a的值為 ,“活動時間為4天”的扇形所對圓心角的度數(shù)為 °,該校初一學(xué)生的總?cè)藬?shù)為 ;
(2)補全頻數(shù)分布直方圖;
(3)如果該市共有初一學(xué)生6000人,請你估計“活動時間不少于4天”的大約有多少人?
【答案】(1)25%;108;200;(2)頻數(shù)分布直方圖見解析;(3)人數(shù)約是4500人
【解析】
(1)用總量1減去2天、3天、4天、6天、7天對應(yīng)的比例,得到的即為5天的比例,即a的值;用4天的比例乘360°得到圓心角;用2天的人數(shù)÷2天的比例得到初一學(xué)生人數(shù);
(2)求出5天對應(yīng)的人數(shù),然后畫圖即可;
(3)先求出不少于4天的比例,然后乘總?cè)藬?shù)得到.
(1)a=1-10%-15%-30%-15%-5%=25%
n=30%×360°=108°
初一總?cè)藬?shù)=人
(2)5天的人數(shù)=200×25%=50人,圖形如下:
(3)不少于4天的比例=30%+25%+15%=5%=75%
不少于4天的人數(shù)=6000×75%=4500人
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,四邊形為平行四邊形,在軸上一定點,為軸上一動點,且點從原點出發(fā),沿著軸正半軸方向以每秒個單位長度運動,已知點運動時間為.
(1)點坐標(biāo)為________,點坐標(biāo)為________;(直接寫出結(jié)果,可用表示)
(2)當(dāng)為何值時,為等腰三角形;
(3)點在運動過程中,是否存在,使得,若存在,請求出的值,若不存在,請說明理由!
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=120°,AB的垂直平分線交BC于M,交AB于E,AC的垂直平分線交BC于N,交AC于F,若MN=2,則NF=___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若,是.
理由:如圖,過點作,
則.(依據(jù))
因為,
所以,
所以.
所以.
(1)上述證明過程中的依據(jù)是指 .
(2)若將點移至圖2所示的位置,,此時之間有什么關(guān)系?請說明理由.
(3)在圖中,,與又有何關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2-4=0.
(1)當(dāng)m為何值時,方程有兩個不相等的實數(shù)根?
(2)若邊長為5的菱形的兩條對角線的長分別為方程兩根的2倍,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在平面直角坐標(biāo)系中.等腰Rt△OAB的斜邊OA在x軸上.P為線段OB上﹣動點(不與O,B重合).過P點向x軸作垂線.垂足為C.以PC為邊在PC的右側(cè)作正方形PCDM.OP=t,OA=3.設(shè)過O,M兩點的拋物線為y=ax2+bx.其頂點N(m,n)
(1)寫出t的取值范圍 ,寫出M的坐標(biāo):( , );
(2)用含a,t的代數(shù)式表示b;
(3)當(dāng)拋物線開向下,且點M恰好運動到AB邊上時(如圖2)
①求t的值;
②若N在△OAB的內(nèi)部及邊上,試求a及m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)要印制節(jié)目單,有兩個印刷廠前來聯(lián)系業(yè)務(wù),他們的報價相同,甲廠的優(yōu)惠條件是:按每份定價1.5元的八折收費,另收900元制版費;乙廠的優(yōu)惠條件是:每份定價1.5元的價格不變,而900元的制版費則六折優(yōu)惠.問:
(1)學(xué)校印制多少份節(jié)目單時兩個印刷廠費用是相同的?
(2)學(xué)校要印制1500份節(jié)目單,選哪個印刷廠所付費用少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE⊥BD于E,CF⊥BD于F,AB=CD,AE=CF,則圖中全等三角形共有( )
A.1對B.2對C.3對D.4對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com