【題目】已知,,,滿足,則__________

【答案】60

【解析】

先利用單項式乘以多項式法則將要求值的多項式進行整理,將題目所給的有確定值的式子進行變形,得出所需要的式子的值,運用整體代入法既可求解.

m+n=p+q=4

∴(m+n)(p+q=4×4=16

∵(m+n)(p+q=mp+mq+np+nq

mp+mq+np+nq=16

mp+nq=6

mq+np=10

∴(m2+n2pq+mnp2+q2

=m2pq+n2pq+mnp2+mnq2

=mpmq+npnq+mpnp+nqmq

=mpmq+mpnp+npnq+nqmq

=mpmq+np+npnq+mq

=mp+nq)(np+mq

=6×10

=60

故答案為:60

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,如圖∠BAC90°,BD平分∠ABC,點EBC上,DEAB,點FBC上,連結(jié)AF,∠C36°.

1)求∠BDE的度數(shù);

2)若∠BAF∶∠CAF23,求證:AFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=8厘米,BC=6厘米,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿AB方向運動速度為1厘米/秒,點Q從點B開始沿BCA方向運動速度為2厘米/秒,若它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

1)求出發(fā)2秒后,PQ的長;

2)點QCA邊上運動時,當(dāng)△BCQ成為等腰三角形時,求點Q的運動時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市教育行政部門為了了解初一學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機抽樣調(diào)查了某校初一學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖)

請你根據(jù)圖中提供的信息,回答下列問題:

1)扇形統(tǒng)計圖中a的值為   活動時間為4的扇形所對圓心角的度數(shù)為   °,該校初一學(xué)生的總?cè)藬?shù)為   ;

2)補全頻數(shù)分布直方圖;

3)如果該市共有初一學(xué)生6000人,請你估計活動時間不少于4的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)滿足( )時,的值取得最。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBD于E,CFBD于F,連結(jié)AF,CE.求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,拋物線y=x22mx+m2+m的頂點為A,與y軸交于點B.當(dāng)拋物線不經(jīng)過坐標(biāo)原點時,分別作點AB關(guān)于原點的對稱點C、D,連結(jié)AB、BC、CD、DA

1)分別用含有m的代數(shù)式表示點A、B的坐標(biāo).

2)判斷點B能否落在y軸負半軸上,并說明理由.

3)連結(jié)AC,設(shè)l=AC+BD,求lm之間的函數(shù)關(guān)系式.

4)過點Ay軸的垂線,交y軸于點P,以AP為邊作正方形APMN,MNAP上方,如圖②,當(dāng)正方形APMN與四邊形ABCD重疊部分圖形為四邊形時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程隊接到任務(wù)通知,需要修建一段長1800米的道路,按原計劃完成總?cè)蝿?wù)的后,為了讓道路盡快投入使用,工程隊將工作效率提高了50%,一共用了10小時完成任務(wù).

1)按原計劃完成總?cè)蝿?wù)的時,已修建道路多少米?

2)求原計劃每小時修建道路多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點,點

1)只用直尺(沒有刻度)和圓規(guī),求作一個點P,使點P同時滿足下列兩個條件

①點PA,B兩點的距離相等;

②點P的兩邊的距離相等.

(要求保留作圖痕跡,不必寫出作法)

2)在(1)作出點P后,點P的坐標(biāo)為_________

查看答案和解析>>

同步練習(xí)冊答案