【題目】在求1+3+32+33+34+35+36+37+38的值時(shí),張紅發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38①, 然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,
②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,
所以S= .
得出答案后,愛動(dòng)腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,延長BC至E使BE=BA,過點(diǎn)B作BD⊥AE于點(diǎn)D,BD與AC交于點(diǎn)F,連接EF.
(1)求證:BF=2AD;
(2)若CE=,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC=4,在△ABC的外部,以AB為直角邊作等腰直角△ABD,連接CD,則△BCD的周長為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有_______________(請(qǐng)?zhí)顚懰姓_結(jié)論的序號(hào))
①在一個(gè)裝有2白球和3個(gè)紅球的袋中摸3個(gè)球,摸到紅球是必然事件.②若,則; ③已知反比例函數(shù),若,則; ④分式是最簡分式 ; ⑤和 是同類二次根式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上的點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為﹣4,點(diǎn)C到點(diǎn)A、點(diǎn)B的距離相等,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(x大于0)秒.
(1)點(diǎn)C表示的數(shù)是 ;
(2)當(dāng)x= 秒時(shí),點(diǎn)P到達(dá)點(diǎn)A處?
(3)運(yùn)動(dòng)過程中點(diǎn)P表示的數(shù)是 (用含字母x的式子表示);
(4)當(dāng)P,C之間的距離為2個(gè)單位長度時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別為﹣3,0,1,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,那么x的值是 ;
(2)當(dāng)x= 時(shí),使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是5;
(3)如果點(diǎn)P以每秒鐘3個(gè)單位長度的速度從點(diǎn)O向左運(yùn)動(dòng)時(shí),點(diǎn)M和點(diǎn)N分別以每秒鐘1個(gè)單位長度和每秒鐘4個(gè)單位長度的速度也向左運(yùn)動(dòng),且三點(diǎn)同時(shí)出發(fā),那么 秒鐘時(shí)點(diǎn)P到點(diǎn)M,點(diǎn)N的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將一個(gè)由五個(gè)邊長為1的小正方形組成的圖形剪開可以拼成一個(gè)正方形.
(1)拼成的正方形的面積與邊長分別是多少?
(2)你能在圖②中連結(jié)四個(gè)格點(diǎn)(每一個(gè)小正方形的頂點(diǎn)叫做格點(diǎn)),畫出一個(gè)面積為10的正方形嗎?如果不能,請(qǐng)說明理由;如果能,請(qǐng)?jiān)趫D②中畫出這個(gè)正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、C分別在∠GBE的邊BG、BE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點(diǎn)D,連接CD.
(1)求證:①AB=AD;②CD平分∠ACE.
(2)猜想∠BDC與∠BAC之間有何數(shù)量關(guān)系?并對(duì)你的猜想加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB經(jīng)過點(diǎn)O,∠COD=90°,OE是∠BOC的平分線.
(1)如圖1,若∠AOC=50°,求∠DOE;
(2)如圖1,若∠AOC=α,求∠DOE;(用含α的式子表示)
(3)將圖1中的∠COD繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)到圖2的位置,其它條件不變,(2)中的結(jié)論是否還成立?試說明理由;
(4)將圖1中的∠COD繞頂點(diǎn)O逆時(shí)針旋轉(zhuǎn)到圖3的位置,其它條件不變,求∠DOE.(用含α的式子表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com