【題目】如圖,兩幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD之間有一景觀池,小雙在A點(diǎn)測(cè)得池中噴泉處E點(diǎn)的俯角為42°,在C點(diǎn)測(cè)得E點(diǎn)的俯角為45°,點(diǎn)B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC和△DEF是兩個(gè)等腰直角三角形,∠A=∠D=90°,△DEF的頂點(diǎn)E位于邊BC的中點(diǎn)上.
(1)如圖1,設(shè)DE與AB交于點(diǎn)M,EF與AC交于點(diǎn)N,求證:△BEM∽△CNE;
(2)如圖2,將△DEF繞點(diǎn)E旋轉(zhuǎn),使得DE與BA的延長(zhǎng)線交于點(diǎn)M,EF與AC交于點(diǎn)N,于是,除(1)中的一對(duì)相似三角形外,能否再找出一對(duì)相似三角形并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,連接OC,過(guò)點(diǎn)A作AD∥OC,交BC的延長(zhǎng)線于D,AB交OC于E,∠ABC=45°.
(1)求證:AD是⊙O的切線;
(2)若AE=,CE=3.
①求⊙O的半徑;
②求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE,且點(diǎn)F在矩形ABCD的內(nèi)部,將AF延長(zhǎng)后交邊BC于點(diǎn)G,且,則的值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸的兩個(gè)交點(diǎn)分別為A(-3,0)、B(1,0),與y軸交于點(diǎn)D(0,3),過(guò)頂點(diǎn)C作CH⊥x軸于點(diǎn)H.
(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);
(2)連結(jié)AD、CD,若點(diǎn)E為拋物線上一動(dòng)點(diǎn)(點(diǎn)E與頂點(diǎn)C不重合),當(dāng)△ADE與△ACD面積相等時(shí),求點(diǎn)E的坐標(biāo);
(3)若點(diǎn)P為拋物線上一動(dòng)點(diǎn)(點(diǎn)P與頂點(diǎn)C不重合),過(guò)點(diǎn)P向CD所在的直線作垂線,垂足為點(diǎn)Q,以P、C、Q為頂點(diǎn)的三角形與△ACH相似時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D、E分別是△ABC邊AB、BC上的點(diǎn),AD=2BD,BE=CE,設(shè)△ADF的面積為S1,△CEF的面積為S2,若S△ABC=9,則S1﹣S2=( 。
A. B. C. 1D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,OE=OF.
(1)求證:△BOE≌△DOF;
(2)若BD=EF,連接DE、BF,判斷四邊形EBFD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c,當(dāng)x=3時(shí),y有最小值﹣4,且圖象經(jīng)過(guò)點(diǎn)(﹣1,12).
(1)求此二次函數(shù)的解析式;
(2)該拋物線交x軸于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,在拋物線對(duì)稱軸上有一動(dòng)點(diǎn)P,求PA+PC的最小值,并求當(dāng)PA+PC取最小值時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從A地到B地需修一條公路,該工程由甲、乙兩隊(duì)共同完成,甲、乙兩隊(duì)分別從A地、B地同時(shí)開(kāi)始修路,設(shè)修路的時(shí)間為天,未修的路程為米,圖中的折線表示甲、乙兩個(gè)工程隊(duì)從開(kāi)始施工到工程結(jié)束的過(guò)程中y與x之間的函數(shù)關(guān)系,已知在開(kāi)始修路5天后,甲工程隊(duì)因設(shè)備升級(jí)而停工5天,設(shè)備升級(jí)后甲工程隊(duì)每天修路比原來(lái)多,乙隊(duì)施工效率始終不變,則設(shè)備升級(jí)后甲工程隊(duì)每天修路比原來(lái)多______米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com