【題目】一個口袋中放有290個涂有紅、黑、白三種色的質(zhì)地相同的小球,若紅球個數(shù)是黑球個數(shù)的2倍多3個,從袋中任取一個球是白球的概率是

1)求袋中紅球的個數(shù).

2)求從袋中任取一個球是黑球的概率.

【答案】1)袋中紅球的個數(shù)為175個;(2)從袋中任取一個球是黑球的概率為

【解析】

先求得白球的數(shù)量,再設黑球數(shù)量為x則可得2x+3+x29029,解得x=86,即可求得紅球的數(shù)量.

由(1)得出黑球的數(shù)量再除以總數(shù)量即可.

1)∵一個口袋中放有290個涂有紅、黑、白三種色的質(zhì)地相同的小球,從袋中任取一個球是白球的概率是 ,

∴白球的個數(shù)為:290×29(個),

設黑球的個數(shù)為x個,

2x+3+x29029,

解得:x86,

2x+3175,

答:袋中紅球的個數(shù)為175個;

2)由(1)得:從袋中任取一個球是黑球的概率為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式,探究其中規(guī)律.

1個等式:

2個等式:

3個等式:

……

1)第4個等式: (直接填寫結(jié)果);

2)根據(jù)以上規(guī)律請計算:;

3)通過以上規(guī)律請猜想寫出: (直接填寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某乒乓球的質(zhì)量檢驗結(jié)果如下:

抽取的乒乓球數(shù)n

50

100

200

500

1000

1500

2000

優(yōu)等品的頻數(shù)m

48

95

188

x

948

1426

1898

優(yōu)等品的頻率(精確到0.001)

0.960

y

0.940

0.944

z

0.951

0.949

(1)根據(jù)表中信息可得:x=______,y=______,z=______;

(2)從這批乒乓球中,任意抽取一只乒乓球是優(yōu)等品的概率的估計值是多少?(精確到0.01)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC的邊長為8,動點M從點B出發(fā),沿B→A→C→B的方向以每秒3個單位長度的速度運動,動點N從點C出發(fā),沿C→A→BC的方向以每秒2個單位長度的速度運動.

1)若動點M、N同時出發(fā),經(jīng)過幾秒第一次相遇?

2)若動點MN同時出發(fā),且其中一點到達終點時,另一點即停止運動.在ABC的邊上是否存在一點D,使得以點AM、N、D為頂點的四邊形為平行四邊形?若存在,求此時運動的時間及點D的具體位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校一幢教學大樓的頂部豎有一塊傳承文明,啟智求真的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度(測角器的高度忽略不計,結(jié)果精確到0.1米參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠B=AFE,EA是∠BEF的平分線,求證:

(1)ABE≌△AFE;

(2)FAD=CDE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了保護環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設備共10臺.已知用90萬元購買A型號的污水處理設備的臺數(shù)與用75萬元購買B型號的污水處理設備的臺數(shù)相同,每臺設備價格及月處理污水量如下表所示:

污水處理設備

A型

B型

價格(萬元/臺)

m

m-3

月處理污水量(噸/臺)

220

180

(1)求m的值;

(2)由于受資金限制,指揮部用于購買污水處理設備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列關系哪些表示函數(shù)關系?

(1)在一定的時間t內(nèi),勻速運動所走的路程s和速度v;

(2)在平靜的湖面上,投入一粒石子,泛起的波紋的周長L與半徑r;

(3)正方形的面積S和梯形的面積S′;

(4)圓的面積S和它的周長C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線ABCD,直線EF分別交ABCD于點A、CCM是∠ACD的平分線,CMAB于點N

1)如圖,過點AAC的垂線交CM于點M,若∠MCD55°,求∠MAN的度數(shù);

2)如圖,點GCD上的一點,連接MA、MG,若MC平分∠AMG且∠AMG36°,∠MGD+EAB180°,求∠ACD的度數(shù).

查看答案和解析>>

同步練習冊答案