【題目】已知二次函數(shù)圖象的頂點坐標為M(1,0),直線與該二次函數(shù)的圖象交于A,B兩點,其中A點的坐標為(3,4),B點在軸上.
(1)求m的值及這個二次函數(shù)的解析式;
(2)若P(,0) 是軸上的一個動點,過P作軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點.
①當0<< 3時,求線段DE的最大值;
②若直線AB與拋物線的對稱軸交點為N,問是否存在一點P,使以M、N、D、E為頂點的四邊形是平行四邊形?若存在,請求出此時P點的坐標;若不存在,請說明理由.
【答案】(1) ; (2)①有最大值②存在.(2,0)(,0)(,0).
【解析】
(1)將A點坐標分別代入拋物線的直線,便可求出拋物線的解析式和m的值;
(2)過A作AH⊥PM于H,利用△MAB的面積=S梯形BOHA-S△BOM-S△AMH計算即可;
(3)①線段DE的長為h,根據(jù)P點坐標分別求出DE兩點坐標,便可求出h與a之間的函數(shù)關(guān)系式,進而可求出線段DE的最大值;
②存在一點P,使以M、N、D、E為頂點的四邊形是平行四邊形,要使四邊形NMED是平行四邊形,必須DE=MN=2,由①知DE=|-a2+3a|,進而求出a的值,所以P的坐標可求出.
(1)設拋物線的解析式為y=a(x-1)2,
∵點A(3,4)在拋物線上,則4=a(3-1)2,
解得a=1,
∴拋物線的解析式為y=(x-1)2
∵點A(3,4)也在直線y=x+m,即4=3+m,
解得m=1;
(2)過A作AH⊥PM于H,
∵B(0,1),M(1,0),A(3,4),
∴OB=1,OH=3,AH=4,
∴△MAB的面積=S梯形BOHA-S△BOM-S△AMH=7.5-×1×1-×2×4=3;
(3)①已知P點坐標為P(a,0),則E點坐標為E(a,a2-2a+1),D點坐標為D(a,a+1),
h=DE=yD-yE=a+1-(a2-2a+1)=-a2+3a,
∴h與a之間的函數(shù)關(guān)系式為h=-a2+3a=-(a-)2+(0<a<3),
∴線段DE的最大值是;
②存在一點P,使以M、N、D、E為頂點的四邊形是平行四邊形,
理由是∵M(1,0),
∴把x=1代入y=x+1得:y=2,
即N(1,2),
∴MN=2,
要使四邊形NMED是平行四邊形,必須DE=MN=2,
由①知DE=|-a2+3a|,
∴2=|-a2+3a|,
解得:a1=2,a2=1,a3=,a4=,
∴(2,0),(1,0)(因為和M重合,舍去)(,0),(,0)
∴P的坐標是(2,0),(,0),(,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AE是△ABC的角平分線.AE的垂直平分線交AB于點O,以點O為圓心,OA為半徑作⊙O,交AB于點F.
(1)求證:BC是⊙O的切線;
(2)若AC=2,tanB,求⊙O的半徑r的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊長是4厘米,∠B=60°,動點P以1厘米/秒的速度自A點出發(fā)沿AB方向運動,動點Q以2厘米/秒的速度自B點出發(fā)沿BC方向運動至C點停止,同時P點也停止運動若點P,Q同時出發(fā)運動了t秒,記△BPQ的面積為S厘米2,下面圖象中能表示S與t之間的函數(shù)關(guān)系的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,銳角三角形ABC的兩條高線BE、CD相交于點O,BE=CD.
(1)求證:BD=CE;
(2)判斷點O是否在∠BAC的平分線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,過點C作CF∥BE交DE的延長線于F,連接CD.
(1)求證:四邊形BCFE是菱形;
(2)在不添加任何輔助線和字母的情況下,請直接寫出圖中與△BEC面積相等的所有三角形(不包括△BEC).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生對“第二十屆中國哈爾濱冰雪大世界”主題景觀的了解情況,在全體學生中隨機抽取了部分學生進行調(diào)查,并把調(diào)查結(jié)果繪制成如圖的不完整的兩幅統(tǒng)計圖:
(1)本次調(diào)查共抽取了多少名學生;
(2)通過計算補全條形圖;
(3)若該學校共有名學生,請你估計該學校選擇“比較了解”項目的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某學生在旗桿EF與實驗樓CD之間的A處,測得∠EAF=60°,然后向左移動10米到B處,測得∠EBF=30°,∠CBD=45°,tan∠CAD= .
(1)求旗桿EF的高(結(jié)果保留根號);
(2)求旗桿EF與實驗樓CD之間的水平距離DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(﹣2,﹣2),B(0,3),C(3,3),D(4,﹣2),y是關(guān)于x的二次函數(shù),拋物線y1經(jīng)過點A、B、C,拋物線y2經(jīng)過點B、C、D,拋物線y3經(jīng)過點A、B、D,拋物線y4經(jīng)過點A、C、D.下列判斷:
①四條拋物線的開口方向均向下;
②當x<0時,至少有一條拋物線表達式中的y均隨x的增大而減;
③拋物線y1的頂點在拋物線y2頂點的上方;
④拋物線y4與y軸的交點在點B的上方.
所有正確結(jié)論的序號為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=與x軸交于A,C(A在C的左側(cè)),點B在拋物線上,其橫坐標為1,連接BC,BO,點F為OB中點.
(1)求直線BC的函數(shù)表達式;
(2)若點D為拋物線第四象限上的一個動點,連接BD,CD,點E為x軸上一動點,當△BCD的面積的最大時,求點D的坐標,及|FE﹣DE|的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com