【題目】如圖,在中,,過點(diǎn)的直線,為邊上一點(diǎn),過點(diǎn)作,交直線于,垂足為,連接、
(1)當(dāng)在中點(diǎn)時(shí),四邊形是什么特殊四邊形?說明你的理由;
(2)當(dāng)為中點(diǎn)時(shí),等于 度時(shí),四邊形是正方形.
【答案】(1)四邊形是菱形,理由見解析;(2)
【解析】
(1)先證明,得出四邊形是平行四邊形,再“根據(jù)直角三角形斜邊上的中線等于斜邊的一半”證出,得出四邊形是菱形;
(2)先求出,再根據(jù)菱形的性質(zhì)求出,即可證出結(jié)論.
解:當(dāng)點(diǎn)是的中點(diǎn)時(shí),四邊形是菱形;理由如下:
∵,
,
∵,
,
,
∵,即,
四邊形是平行四邊形,
;
為中點(diǎn),
,
,
∵,
四邊形是平行四邊形,
∵,為中點(diǎn),
,
四邊形是菱形;
(2)當(dāng)時(shí),四邊形是正方形;理由如下:
∵,,
,
∵四邊形是菱形,
,
,
四邊形是正方形.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣x+c與x軸相交于點(diǎn)A(﹣2,0)、B(4,0),與y軸相交于點(diǎn)C,連接AC,BC,以線段BC為直徑作⊙M,過點(diǎn)C作直線CE∥AB,與拋物線和⊙M分別交于點(diǎn)D,E,點(diǎn)P在BC下方的拋物線上運(yùn)動(dòng).
(1)求該拋物線的解析式;
(2)當(dāng)△PDE是以DE為底邊的等腰三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)四邊形ACPB的面積最大時(shí),求點(diǎn)P的坐標(biāo)并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在某次作業(yè)中得到如下結(jié)果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=+=1.
據(jù)此,小明猜想:對(duì)于任意銳角α,均有sin2α+sin2(90°-α)=1.
(1)當(dāng)α=30°時(shí),驗(yàn)證sin2α+sin2(90°-α)=1是否成立;
(2)小明的猜想是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)舉出一個(gè)反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).
(1)作出△ABC關(guān)于y軸對(duì)稱的,并寫出的坐標(biāo);
(2)作出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的,并求出所經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,是等邊三角形,、的延長(zhǎng)線分別交于點(diǎn)、,連結(jié),,與相交于點(diǎn).給出下列結(jié)論:①,②,③,④其中正確結(jié)論的序號(hào)是( )
A.①②B.②③④C.①③④D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(0,3)、(-4,0).
(1)將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△AEF,點(diǎn)O、B對(duì)應(yīng)點(diǎn)分別是E、F,請(qǐng)?jiān)趫D中面出△AEF;
(2)以點(diǎn)O為位似中心,將三角形AEF作位似變換且縮小為原來的在網(wǎng)格內(nèi)畫出一個(gè)符合條件的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角的頂點(diǎn)在正方形的對(duì)角線上,所在的直線交于點(diǎn),交于點(diǎn),連接,. 下列結(jié)論中,正確的有_________ (填序號(hào)).
①;②是的一個(gè)三等分點(diǎn);③;④;⑤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=﹣x2+2x+3交x軸于點(diǎn)A、B,其中點(diǎn)A在點(diǎn)B的左邊,交y軸于點(diǎn)C,點(diǎn)P為拋物線上位于x軸上方的一點(diǎn).
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)若△PAB的面積為4,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
(探究展示)
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.
(拓展延伸)
(3)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請(qǐng)分別作出判斷,不需要證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com