【題目】ABC中,∠A=60°,∠ABC=45°,AB=4,DAC上一動點,以BD為直徑的⊙OBC于點E,交AB于點F,則EF的最小值是______.

【答案】3

【解析】

由垂線段的性質(zhì)可知,當(dāng)BDABC的邊AC上的高時,直徑BD最短,此時線段EF=2EH=2OEsinEOH=2OEsin45°,因此當(dāng)半徑OE最短時,EF最短,連接OE,OF,過O點作OHEF,垂足為H,在RtADB中,解直角三角形求直徑BD,由圓周角定理可知∠EOH=EOF=ABC=45°,在RtEOH中,解直角三角形求EH,由垂徑定理可知EF=2EH

由垂線段的性質(zhì)可知,當(dāng)BDABC的邊BC上的高時,直徑BD最短,

如圖,

,

連接OE,OF,過O點作OHEF,垂足為H,

∵在RtADB中,∠BAC=60°,AB=4,

BD=6,即此時圓的直徑為6,

由圓周角定理可知∠EOH=EOF=ABC=45°

∴在RtEOH中,EH=OEsinEOH=3×=,

由垂徑定理可知EF=2EH=3

故答案為:3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,、的弦,的切線,切點為,,的延長線相交于點.

1)求證:的切線;

2)若,,求的半徑.

3)在(2)中的條件下,,將以點為中心逆時針旋轉(zhuǎn),求掃過的圖形的面積(結(jié)果用表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B的半徑OA上的一點(不與端點重合),過點BOA的垂線交于點C,D,連接OD,E上一點,,過點C的切線l,連接OE并延長交直線l于點F.

1)①依題意補(bǔ)全圖形.

②求證:∠OFC=ODC.

2)連接FB,若BOA的中點,的半徑是4,求FB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地質(zhì)量監(jiān)管部門對轄區(qū)內(nèi)的甲、乙兩家企業(yè)生產(chǎn)的某同類產(chǎn)品進(jìn)行檢查,分別隨機(jī)抽取了50件產(chǎn)品并對某一項關(guān)鍵質(zhì)量指標(biāo)做檢測,獲得了它們的質(zhì)量指標(biāo)值s,并對樣本數(shù)據(jù)(質(zhì)量指標(biāo)值s)進(jìn)行了整理、描述和分析.下面給出了部分信息.

a.該質(zhì)量指標(biāo)值對應(yīng)的產(chǎn)品等級如下:

質(zhì)量指標(biāo)值

等級

次品

二等品

一等品

二等品

次品

說明:等級是一等品,二等品為質(zhì)量合格(其中等級是一等品為質(zhì)量優(yōu)秀).

等級是次品為質(zhì)量不合格.

b.甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布統(tǒng)計表如下(不完整).

c.乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖如下.

甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布表

分組

頻數(shù)

頻率

2

0.04

m

32

n

0.12

0

0.00

合計

50

1.00

乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖

d.兩企業(yè)樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、極差、方差如下:

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

甲企業(yè)

31.92

32.5

34

15

11.87

乙企業(yè)

31.92

31.5

31

20

15.34

根據(jù)以上信息,回答下列問題:

1m的值為________,n的值為________.

2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計該產(chǎn)品質(zhì)量合格的概率為________;若乙企業(yè)生產(chǎn)的某批產(chǎn)品共5萬件,估計質(zhì)量優(yōu)秀的有________萬件;

3)根據(jù)圖表數(shù)據(jù),你認(rèn)為________企業(yè)生產(chǎn)的產(chǎn)品質(zhì)量較好,理由為______________.(從某個角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:

1 2 3

1)初步思考:

如圖1, 中,已知,BC=4NBC上一點且,試說明:

2)問題提出:

如圖2,已知正方形ABCD的邊長為4,圓B的半徑為2,點P是圓B上的一個動點,求的最小值.

3)推廣運(yùn)用:

如圖3,已知菱形ABCD的邊長為4,∠B60°,圓B的半徑為2,點P是圓B上的一個動點,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB為⊙O的直徑.

1)如圖a,點D 的中點,當(dāng)弦BD=AC時,求∠A.

2)如圖b,點D的中點,當(dāng)AB=6,點EBD的中點時,求OE的長.

3)如圖c,點D上任意一點(不與A、C重合),若點C的中點,探求BD、AD、CD之間的數(shù)量關(guān)系,直接寫出你探求的結(jié)論,不要求證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12)如圖,在RtABC中,ACB90°,AC8,BC6,CDAB于點D.P從點D出發(fā),沿線段DC向點C運(yùn)動,點Q從點C出發(fā),沿線段CA向點A運(yùn)動,兩點同時出發(fā),速度都為每秒1個單位長度,當(dāng)點P運(yùn)動到C時,兩點都停止.設(shè)運(yùn)動時間為t秒.

(1)求線CD的長;

(2)設(shè)CPQ的面積為S,求St之間的函數(shù)關(guān)系式,并確定在運(yùn)動過程中是否存在某一時刻t,使得SCPQSABC9100?若存在,求出t的值;若不存在,說明理由;

(3)當(dāng)t為何值時,CPQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,公園中一正方形水池中有一噴泉,噴出的水流呈拋物線狀,測得噴出口高出水面0.8m,水流在離噴出口的水平距離1.25m處達(dá)到最高,密集的水滴在水面上形成了一個半徑為3m的圓,考慮到出水口過高影響美觀,水滴落水形成的圓半徑過大容易造成水滴外濺到池外,現(xiàn)決定通過降低出水口的高度,使落水形成的圓半徑為2.75m,則應(yīng)把出水口的高度調(diào)節(jié)為高出水面( 。

A.0.55B.C.D.0.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場銷售服裝,平均每天可售出件,每件盈利元,為擴(kuò)大銷售量,減少庫存,該商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),一件衣服降價元,每天可多售出件.

設(shè)每件降價元,每天盈利元,請寫出之間的函數(shù)關(guān)系式;若商場每天要盈利元,同時盡量減少庫存,每件應(yīng)降價多少元?

每件降價多少元時,商場每天盈利達(dá)到最大?最大盈利是多少元?

查看答案和解析>>

同步練習(xí)冊答案