【題目】如圖,,為的中點,點為射線上(不與點重合)的任意一點,連接,并使的延長線交射線于點,設(shè).
(1)求證:;
(2)當時,求的度數(shù);
(3)若的三邊垂直平分線的交點在該三角形的內(nèi)部,直接寫出的取值范圍.
【答案】(1)見解析;(2)50°;(3)40°<α<90°
【解析】
(1)根據(jù)ASA證明:△APM≌△BPN;
(2)由(1)中的全等得:MN=2PN,所以PN=BN,由等邊對等角可得結(jié)論;
(3)直角三角形的三邊垂直平分線的交點是斜邊上的中點,鈍角三角形的三邊垂直平分線的交點在三角形的外部,只有銳角三角形的三邊垂直平分線的交點在三角形的內(nèi)部,所以根據(jù)題中的要求可知:△BPN是銳角三角形,由三角形的內(nèi)角和可得結(jié)論.
(1)證明:∵P是AB的中點,
∴PA=PB,
在△APM和△BPN中,
∵,
∴△APM≌△BPN(ASA);
(2)解:由(1)得:△APM≌△BPN,
∴PM=PN,
∴MN=2PN,
∵MN=2BN,
∴BN=PN,
∴α=∠B=50°;
(3)解:∵的三邊垂直平分線的交點在該三角形的內(nèi)部,
∴△BPN是銳角三角形,
∵∠B=50°,
∴40°<∠BPN<90°,即40°<α<90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點點的坐標分別為,且將線段繞點逆時針旋轉(zhuǎn)得到線段.
(1)直接寫出 __,__ _,點的坐標為 _;
(2)如圖2,作軸于點點是的中點,點在內(nèi)部,求證:
(3)如圖3,點是第二象限內(nèi)的一個動點,若求線段的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC,則下列結(jié)論:①abc>0;②9a+3b+c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個根為 -,其中正確的結(jié)論個數(shù)有_____________________ (填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場準備購進甲.乙兩種商品,若購進甲商品80個,乙商品40個,需要800元;若購進甲商品50個,乙商品30個,需要550元.
(1)求商場購進甲.乙兩種商品每個需要多少元?
(2)商場準備1000元全部用來購進甲.乙兩種商品,計劃銷售每個甲種商品可獲利潤4元,銷售每個乙種商品可獲利潤5元,銷售這兩種玩具的總利潤不低于600元,那么商場最多購進乙種商品多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E,F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF的長為( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分線,AQ與BN相交于點P,CN與DQ相交于點M,判斷四邊形MNPQ的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知,,,,且以為頂點的四邊形為菱形.
(1)直接寫出點的坐標;
(2)請用無刻度直尺作直線,使直線經(jīng)過點且平分菱形的面積,保留作圖痕跡(若無法打印答題卡,不便于規(guī)范作圖,請用幾何語言直接描述具體的作圖過程代替作圖);
(3)已知點是邊上一點,若線段將菱形的面積分為兩部分,直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中AD∥BC, ∠B=60°,AB=AD=BO=4cm,OC=8cm, 點M從B點出發(fā),按從B→A→D→C的方向,沿四邊形BADC的邊以1cm/s的速度作勻速運動,運動到點C即停止.若運動的時間為t,△MOD的面積為y,則y關(guān)于t的函數(shù)圖象大約是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com