【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點E在對角線AC上,EC=BC=DC.
(1)若∠CBD=39°,求∠BAD的度數(shù);
(2)求證:∠1=∠2.
【答案】
(1)解:∵BC=DC,
∴∠CBD=∠CDB=39°,
∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,
∴∠BAD=∠BAC+∠CAD=39°+39°=78°.
(2)證明:∵EC=BC,
∴∠CEB=∠CBE,
又∵∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,
∴∠2+∠BAE=∠1+∠CBD,
∵∠BAE=∠BDC=∠CBD,
∴∠1=∠2.
【解析】(1)由等腰三角形的性質(zhì)得∠CBD=∠CDB=39°,再根據(jù)同弧所對的圓心角相等得∠BAC=∠CDB=∠CAD=∠CBD=39°,從而求出∠BAD值.
(2)由等腰三角形的性質(zhì)得∠CEB=∠CBE,又由∠CEB=∠2+∠BAE=∠CBE=∠1+∠CBD,由等量代換及等式額性質(zhì)得∠1=∠2.
【考點精析】認真審題,首先需要了解等腰三角形的性質(zhì)(等腰三角形的兩個底角相等(簡稱:等邊對等角)),還要掌握圓周角定理(頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四個結(jié)論①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正確的是( )
A. ①②③④ B. ①② C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,某校政教處對部分學生及家長就校園安全知識的了解程度,進行了隨機抽樣調(diào)查,并繪制成如圖所示的兩幅統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)參與調(diào)查的學生及家長共有 人;
(2)在扇形統(tǒng)計圖中,“基本了解”所對應的圓心角的度數(shù)是 ;
(3)在條形統(tǒng)計圖中,“非常了解”所對應的學生人數(shù)是 ;
(4)若全校有1200名學生,請你估計對“校園安全”知識達到“非常了解”和“基本了解”的學生共有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的頂點A,B,C的坐標分別是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).
①作出△ABC關(guān)于原點O中心對稱的圖形;
②將△ABC繞原點O按順時針方向旋轉(zhuǎn)90°后得到△A1B1C1 , 畫出△A1B1C1 , 并寫出點A1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將9個數(shù)填入幻方的九個格中,使處于同一橫行、同一豎列、同一斜對角線上的三個數(shù)的和相等,如圖1所示。
(1)如圖2所示,求的值;
(2)如圖3所示:
①若求整式D;
②若求這九個整式的和是多少。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,紙上有五個邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個正方形如圖2.
(1)你能在方格圖(圖3)中,連接四個格點(網(wǎng)格線的交點)組成面積為5的正方形嗎?若能,請用虛線畫出.
(2)你能把十個小正方形組成的圖形紙(圖4),剪開并拼成正方形嗎?若能,請仿照圖2的形式把它重新拼成一個正方形.
(3)如圖,是由兩個邊長不等的正方形紙片組成的一個圖形,要將其剪拼成一個既不重疊也無空隙的大正方形,則剪出的塊數(shù)最少為________塊.請你在圖中畫出裁剪線,并說明拼接方法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com