如圖,點(diǎn)C在以AB為直徑的半圓O上,以點(diǎn)A為旋轉(zhuǎn)中心,以∠β(0°<β<90°)為旋轉(zhuǎn)角度將B旋轉(zhuǎn)到點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)F,過(guò)點(diǎn)C作圓O的切線交DE于點(diǎn)G.
(1)求證:∠GCA=∠OCB;
(2)設(shè)∠ABC=m°,求∠DFC的值;
(3)當(dāng)G為DF的中點(diǎn)時(shí),請(qǐng)?zhí)骄俊夕屡c∠ABC的關(guān)系,并說(shuō)明理由.
考點(diǎn):圓的綜合題
專題:綜合題
分析:(1)由AB為⊙O的直角,根據(jù)圓周角定理得到∠ACB=90°,即∠1+∠3=90°,再根據(jù)切線的性質(zhì)得OC⊥CG,則∠3+∠GCA=90°,然后利用等量代換即可得到∠1=∠GCA;
(2)由DE⊥AB得到∠AEF=90°,再根據(jù)等角的余角相等可得到∴∠AFE=∠ABC=m°,然后利用對(duì)頂角相等有∠DFC=∠AFE=m°;
(3)由∠GCA=∠1,∠DFC=∠ABC易得∠GCF=∠GFC,根據(jù)等腰三角形的判定得到GF=GC,由GD=GF得到GD=GC,則∠2=∠4,利用三角形內(nèi)角和得∠2+∠GCF=
1
2
×180°=90°,即∠DCF=90°,而∠ACB=90°,于是得到點(diǎn)B、C、D共線,然后根據(jù)旋轉(zhuǎn)的性質(zhì)得到△ABC以AB為腰的等腰三角形,且頂角∠BAC=β,則根據(jù)三角形內(nèi)角和定理易得β=180°-2∠ABC.
解答:(1)證明:∵AB為⊙O的直角,
∴∠ACB=90°,即∠1+∠3=90°,
∵GC為⊙O的切線,
∴OC⊥CG,
∴∠OCG=90°,即∠3+∠GCA=90°,
∴∠1=∠GCA,
即∠GCA=∠OCB;

(2)解:∵∠ACB=90°,
∴∠ABC+∠BAC=90°,
∵DE⊥AB,
∴∠AEF=90°,
∴∠AFE+∠EAF=90°,
∴∠AFE=∠ABC=m°,
∴∠DFC=∠AFE=m°;

(3)解:∠β=180°-2∠ABC.理由如下:
∵∠GCA=∠1,∠DFC=∠ABC,
而∠1=∠ABC,
∴∠GCF=∠GFC,
∴GF=GC,
∵G為DF的中點(diǎn),
∴GD=GF,
∴GD=GC,
∴∠2=∠4,
∴∠2+∠GCF=
1
2
×180°=90°,即∠DCF=90°,
而∠ACB=90°,
∴點(diǎn)B、C、D共線,
∵以點(diǎn)A為旋轉(zhuǎn)中心,以∠β(0°<β<90°)為旋轉(zhuǎn)角度將B旋轉(zhuǎn)到點(diǎn)D,
∴AD=AB,∠BAD=β,
∴∠ABD=∠ADB,
∴β+2∠ABC=180°,
即β=180°-2∠ABC.
點(diǎn)評(píng):本題考查了圓的綜合題:熟練掌握?qǐng)A周角定理、切線的性質(zhì)、旋轉(zhuǎn)的性質(zhì)以及等腰三角形的判定與性質(zhì);記住三角形的內(nèi)角和定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
3-27
-|-
16
|+
38
-
25

②[(2x-y)2-2y(
1
2
y-3x)-8x]÷2x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列事件為必然事件的是(  )
A、口袋中裝有3個(gè)紅球和1個(gè)白球,從中摸出2個(gè)球,其中必有白球
B、任意擲一枚均勻的1元硬幣,有國(guó)徽的一面朝上
C、打開(kāi)電視,CCTV第一套正在播放動(dòng)畫片《喜洋洋》
D、在同一年出生的13名學(xué)生中,至少有兩人是同一個(gè)月出生

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,△ABC為等邊三角形,點(diǎn)D為BC邊上一點(diǎn),作DE∥AC交AB于點(diǎn)E,說(shuō)明△BDE也是等邊三角形.
(2)如圖2,△ABC為等邊三角形,點(diǎn)E在BA的延長(zhǎng)線上,點(diǎn)D在BC邊上,且ED=EC,請(qǐng)你根據(jù)(1)中的方法適當(dāng)添加輔助線,構(gòu)造全等三角形,說(shuō)明BD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠C=90°,∠A=30°,AC=6,點(diǎn)P是線段AC上的一動(dòng)點(diǎn),作PD⊥AC,垂足為P,交AB于點(diǎn)D,設(shè)AP=t(0<t<6).設(shè)△APD關(guān)于直線PD的對(duì)稱的圖形與四邊形BCPD重疊部分的面積為S.
(1)點(diǎn)A關(guān)于直線PD的對(duì)稱點(diǎn)A′與點(diǎn)C重合時(shí),t=
 
;
(2)求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于D,過(guò)D作DE⊥AC,交AC于E,DE是⊙O的切線嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,DE∥BC,AD=1,AB=3,DE=1.5,那么BC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的直徑AB與弦CD交于點(diǎn)M,添加一個(gè)條件
 
,得到AB⊥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
327
-
2
×
6
3

32
-3
1
2
+
2

1
4
(2x+3)2=1

(
3
+
5
-
2
)(
3
-
5
+
2
)

查看答案和解析>>

同步練習(xí)冊(cè)答案