【題目】A,B兩點(diǎn)在數(shù)軸上如圖所示,其中O為原點(diǎn),點(diǎn)A對應(yīng)的有理數(shù)為a,點(diǎn)B對應(yīng)的有理數(shù)為b,且點(diǎn)A距離原點(diǎn)6個(gè)單位長度,a.b滿足b-|a|=2.
(1)a=______;b=______;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0)
①當(dāng)PO=2PB時(shí),求點(diǎn)P的運(yùn)動(dòng)時(shí)間t:
②當(dāng)PB=6時(shí),求t的值:
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段OB上時(shí),分別取AP和OB的中點(diǎn)E、F,則的值是否為一個(gè)定值?如果是,求出定值,如果不是,說明理由.
【答案】(1)-6,8;(2)①t=或11;②t=4或10;(3)為定值2.
【解析】
(1)由點(diǎn)A距離原點(diǎn)6個(gè)單位長度,點(diǎn)A在原點(diǎn)左邊,推出a=-6,由b-|a|=2.可得b=8;
(2)①②根據(jù)題意構(gòu)建方程即可解決問題;
(3)根據(jù)中點(diǎn)坐標(biāo)公式分別表示出點(diǎn)E表示的數(shù),點(diǎn)F表示的數(shù),再計(jì)算 即可.
(1)∵點(diǎn)A距離原點(diǎn)6個(gè)單位長度,點(diǎn)A在原點(diǎn)左邊,
∴a=-6,
∵b-|a|=2.
∴b=8,
故答案為-6,8.
(2)①∵OP=2PB,
觀察圖象可知點(diǎn)P在點(diǎn)O的右側(cè):2t-6=2(14-2t)或2t-6=2(2t-14),
解得t=或11.
②(14-2t)=6或(2t-14)=6
解得t=4或10.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段OB上時(shí),
AP中點(diǎn)E表示的數(shù)是=-6+t,OB的中點(diǎn)F表示的數(shù)是4,
所以EF=4-(-6+t)=10-t,
則==2.
所以的值為定值2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)的最大值為4,且拋物線過點(diǎn)( ,﹣ ),點(diǎn)P(t,0)是x軸上的動(dòng)點(diǎn),拋物線與y軸交點(diǎn)為C,頂點(diǎn)為D.
(1)求該二次函數(shù)的解析式,及頂點(diǎn)D的坐標(biāo);
(2)求|PC﹣PD|的最大值及對應(yīng)的點(diǎn)P的坐標(biāo);
(3)設(shè)Q(0,2t)是y軸上的動(dòng)點(diǎn),若線段PQ與函數(shù)y=a|x|2﹣2a|x|+c的圖象只有一個(gè)公共點(diǎn),求t的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計(jì)劃購買一批課外讀物,為了了解學(xué)生對課外讀物的需求情況,學(xué)校進(jìn)行了一次“我最喜愛的課外讀物”的調(diào)查,設(shè)置了“文學(xué)”、“科普”、“藝術(shù)”和“其他”四個(gè)類別,規(guī)定每人必須并且只能選擇其中一類,現(xiàn)從全體學(xué)生的調(diào)查表中隨機(jī)抽取了部分學(xué)生的調(diào)查表進(jìn)行統(tǒng)計(jì),并把統(tǒng)計(jì)結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,則在扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)B出發(fā),沿對角線BD向點(diǎn)D勻速運(yùn)動(dòng),速度為4cm/s,過點(diǎn)P作PQ⊥BD交BC于點(diǎn)Q,以PQ為一邊作正方形PQMN,使得點(diǎn)N落在射線PD上,點(diǎn)O從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),速度為3m/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點(diǎn)P與點(diǎn)O同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為t(單位:s)(0<t< ).
(1)如圖1,連接DQ平分∠BDC時(shí),t的值為;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請你繼續(xù)進(jìn)行探究,并解答下列問題:
①證明:在運(yùn)動(dòng)過程中,點(diǎn)O始終在QM所在直線的左側(cè);
②如圖3,在運(yùn)動(dòng)過程中,當(dāng)QM與⊙O相切時(shí),求t的值;并判斷此時(shí)PM與⊙O是否也相切?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,則在下列條件:①∠C=∠D ②AC=AD ③∠CBA=∠DBA ④BC=BD中任選一個(gè)能判定△ABC≌△ABD的是( )
A. ①②③④ B. ②③④ C. ①③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2 , 則它移動(dòng)的距離AA′等于( 。
A.0.5cm
B.1cm
C.1.5cm
D.2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某市組織的大型商業(yè)演出活動(dòng)中,對團(tuán)體購買門票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花費(fèi)6000元購買的門票張數(shù),現(xiàn)在只花費(fèi)了4800元.
(1)求每張門票的原定票價(jià);
(2)根據(jù)實(shí)際情況,活動(dòng)組織單位決定對于個(gè)人購票也采取優(yōu)惠政策,原定票價(jià)經(jīng)過連續(xù)二次降價(jià)后降為324元,求平均每次降價(jià)的百分率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條 “折線數(shù)軸” .圖中點(diǎn)A表示-11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀叮笠擦⒖袒謴?fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
問:(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?
(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時(shí),P、B兩點(diǎn)在數(shù)軸上相距的長度與Q、O兩點(diǎn)在數(shù)軸上相距的長度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的正方形按照一定規(guī)律所組成的,其中第①個(gè)圖形中一個(gè)有2個(gè)正方形,第②個(gè)圖形中一共有8個(gè)正方形,第③個(gè)圖形中一共有16個(gè)正方形,…,按此規(guī)律,第⑦個(gè)圖形中正方形的個(gè)數(shù)為( )
A. 56 B. 65 C. 68 D. 71
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com