【題目】我們發(fā)現(xiàn):若AD是△ABC的中線,則有AB2+AC22AD2+BD2),請利用結(jié)論解決問題:如圖,在矩形ABCD中,已知AB20,AD12EDC中點,點P在以AB為直徑的半圓上運動,則CP2+EP2的最小值是_____

【答案】108

【解析】

設(shè)點OAB的中點,連接EO交半圓于點P,此時PE取最小值,利用矩形的性質(zhì)可求出EC、EP的值,則CP2+EP22PE2+CE2,代入數(shù)值即可求出結(jié)論.

解:設(shè)點OAB的中點,連接EO交半圓于點P,此時PE取最小值,

AB20,四邊形ABCD為矩形,

CDAB,EOAD,

OPCEAB10,

EPOEOPADOP2,

CP2+EP22PE2+CE22×22+102108

故答案為:108

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC的直角邊BCx軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸負半軸于點E,反比例函數(shù)y=﹣x0)的圖象過點A,則BEC的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求函數(shù)的最值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD 是平行四邊形,AB=c,AC=b,BC=a,拋物線 y=ax2+bx﹣c x 軸的一個交點為(m,0).

(1)若四邊形ABCD是正方形,求拋物線y=ax2+bx﹣c的對稱軸;

(2) m=c,ac﹣4b<0,且 a,b,c為整數(shù),求四邊形 ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為緩解交通擁堵,某區(qū)擬計劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面AD與通道BC平行,通道水平寬度BC8米,∠BCD=135°,通道斜面CD的長為6米,通道斜面AB的坡度i=1:

(1)求通道斜面AB的長;

(2)為增加市民行走的舒適度,擬將設(shè)計圖中的通道斜面CD的坡度變緩,修改后的通道斜面DE的坡角為30°,求此時BE的長.

(答案均精確到0.1米,參考數(shù)據(jù):≈1.41,≈2.24,≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場以每件42元的價格購進一種服裝,由試銷知,每天的銷量t與每件的銷售價x(元)之間的函數(shù)關(guān)系為t=204-3x。

(1)試寫出每天銷售這種服裝的毛利潤y(元)與每件銷售價x(元)之間的函數(shù)表達式(毛利潤=銷售價-進貨價); 并求出自變量的取值范圍。

2)每件銷售價為多少元,才能使每天的毛利潤最大?最大毛利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,以AB為直徑的⊙OAC于點D.過點CCF∥AB,在CF上取一點E,使DE=CD,連接AE.對于下列結(jié)論:①AD=DC;②△CBA∽△CDE;=;④AE⊙O的切線,一定正確的結(jié)論全部包含其中的選項是(

A. ①② B. ①②③ C. ①④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作出反比例函數(shù)y=-的圖象,并結(jié)合圖象回答:(1)當(dāng)x2時,y的值;(2)當(dāng)1x≤4時,y的取值范圍;(3)當(dāng)1≤y4時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),點C在第二象限,BCy軸交于點D(0,c),若y軸平分∠BAC,則點C的坐標(biāo)不能表示為( 。

A. (b+2a,2b) B. (﹣b﹣2c,2b)

C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)

查看答案和解析>>

同步練習(xí)冊答案