【題目】 我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”(如圖)就是一例.這個(gè)三角形給出了(a+b)n(n=1,2,3,4,5,6)的展開式的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)(a+b)2=a2+2ab+b2展開式中各項(xiàng)的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著(a+b)3=a3+3a2b+3ab2+b3展開式中各項(xiàng)的系數(shù),等等.
有如下四個(gè)結(jié)論:
①(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;
②當(dāng)a=-2,b=1時(shí),代數(shù)式a3+3a2b+3ab2+b3的值是-1;
③當(dāng)代數(shù)式a4+4a3b+6a2b2+4ab3+b4的值是0時(shí),一定是a=-1,b=1;
④(a+b)n的展開式中的各項(xiàng)系數(shù)之和為2n.
上述結(jié)論中,正確的有______(寫出序號(hào)即可).
【答案】①②
【解析】
根據(jù)題中舉例說(shuō)明,明確楊輝三角的與的展開式的系數(shù)間的對(duì)應(yīng)關(guān)系,據(jù)此逐項(xiàng)分析.
解:∵在楊輝三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)展開式中各項(xiàng)的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著展開式中各項(xiàng)的系數(shù),等等
∴在楊輝三角形中第行的個(gè)數(shù),對(duì)應(yīng)展開式中各項(xiàng)的系數(shù),
①∵展開式中各項(xiàng)的系數(shù),為楊輝三角形中第6行的6個(gè)數(shù),
∴;
②∵各項(xiàng)系數(shù)對(duì)應(yīng)楊輝三角中的第4行的4個(gè)數(shù),
∴,
當(dāng)時(shí),代數(shù)式=;
③∵各項(xiàng)系數(shù)對(duì)應(yīng)楊輝三角中的第5行的5個(gè)數(shù),
∴,
當(dāng)代數(shù)式時(shí),,不一定是;
④∵當(dāng)時(shí),展開式各項(xiàng)之和便是系數(shù)之和,
∴的展開式中的各項(xiàng)系數(shù)之和為,
故答案為:①②.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABC交AC于點(diǎn)D,點(diǎn)M,N分別是BD和BC邊上的動(dòng)點(diǎn),則MN+MC的最小值是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),連接PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連接CQ.
(1) 觀察并猜想AP與CQ之間的大小關(guān)系,并證明你的結(jié)論;
(2) 若PA:PB:PC=3:4:5,連接PQ,試判斷△PQC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了扶貧戶學(xué)生好讀書,讀好書,某實(shí)驗(yàn)學(xué)校校友會(huì)在今年開學(xué)初,到新華書店采購(gòu)文學(xué)名著和自然科學(xué)兩類圖書.經(jīng)了解,購(gòu)買30本文學(xué)名著和50本自然科學(xué)書共需2350元,20本文學(xué)名著比20本自然科學(xué)書貴500元.(注:所采購(gòu)的文學(xué)名著價(jià)格都一樣,所采購(gòu)的自然科學(xué)書價(jià)格都一樣)
(1)求每本文學(xué)名著和自然科學(xué)書的單價(jià).
(2)若該校校友會(huì)要求購(gòu)買自然科學(xué)書比文學(xué)名著多30本,自然科學(xué)書和文學(xué)名著的總數(shù)不低于80本,總費(fèi)用不超過(guò)2400元,請(qǐng)求出所有符合條件的購(gòu)書方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交A(1,4),B(-4,c)兩點(diǎn),
如圖2所示,點(diǎn)M、N都在直線AB上,過(guò)M、N分別作y軸的平行線交雙曲線于E、F,設(shè)M、N的橫坐標(biāo)分別為m、n,且 4 < m < 0 , n > 1 ,請(qǐng)?zhí)骄?/span>,當(dāng)m、n滿足什么關(guān)系時(shí),ME=NE.
(1)求反比例函數(shù)及一次函數(shù)的解析式;
(2)點(diǎn)P是x軸上一動(dòng)點(diǎn),使|PA-PB|的值最大,求點(diǎn)P的坐標(biāo)及△PAB的面積;
(3)如圖2所示,點(diǎn)M、N都在直線AB上,過(guò)M、N分別作y軸的平行線交雙曲線于E、F,設(shè)M、N的橫坐標(biāo)分別為m、n,且 , n>1,請(qǐng)?zhí)骄?/span>,當(dāng)m、n滿足什么關(guān)系時(shí),ME=NE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,兩塊形狀、大小完全相同的三角板按照如圖所示的樣子放置,找一找圖中是否有互相平行的線段,完成下面證明:
證明:
∵∠______=∠______,
∴______∥______(______)(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為點(diǎn)F,DE=DG.若△ADG和△AED的面積分別為50和30,則△EDF的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果兩個(gè)角的差的絕對(duì)值等于,就稱這兩個(gè)角互為反余角,其中一個(gè)角叫做另一個(gè)角的反余角,例如,,,,則和互為反余角,其中是的反余角,也是的反余角.
如圖為直線AB上一點(diǎn),于點(diǎn)O,于點(diǎn)O,則的反余角是______,的反余角是______;
若一個(gè)角的反余角等于它的補(bǔ)角的,求這個(gè)角.
如圖2,O為直線AB上一點(diǎn),,將繞著點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn)得,同時(shí)射線OP從射線OA的位置出發(fā)繞點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn),當(dāng)射線OP與射線OB重合時(shí)旋轉(zhuǎn)同時(shí)停止,若設(shè)旋轉(zhuǎn)時(shí)間為t秒,求當(dāng)t為何值時(shí),與互為反余角圖中所指的角均為小于平角的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,邊AB、AC的垂直平分線分別交BC于E、F,若∠EAF=90°,AF=3,AE=4.
(1)求邊BC的長(zhǎng);(2)求出∠BAC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com