【題目】大學(xué)畢業(yè)生小王相應(yīng)國家“自主創(chuàng)業(yè)”的號召,利用銀行小額無息貸款開辦了一家飾品店.該店購進(jìn)一種今年新上市的飾品進(jìn)行銷售,飾品的進(jìn)價為每件40元,售價為每件60元,每月可賣出300件.市場調(diào)查反映:調(diào)整價格時,售價每漲1元每月要少賣10件;售價每下降1元每月要多賣20件.為了獲得更大的利潤,現(xiàn)將飾品售價調(diào)整為60+x(元/件)(x>0即售價上漲,x<0即售價下降,其中x為整數(shù)),每月飾品銷量為y(件),月利潤為w(元).
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如何確定銷售價格才能使月利潤最大?求最大月利潤?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個房間供游客住宿,當(dāng)每個房間的房價為每天180元時,房間會全部住滿.當(dāng)每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于340元.設(shè)每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為△ABC內(nèi)一點,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,則BD的長為( 。
A. 1 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB與弦CD的延長線交于點E,若DE=OB,∠AOC=84°,則∠E等于( )
A.42°
B.28°
C.21°
D.20°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形中,邊上的高,是邊上一點.現(xiàn)有一動點 沿著折線運動,在上的速度是每秒4個單位長度,在上的速度是每秒2個單位長度,則點從點到點的運動過程至少需_________秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象開口向上,對稱軸為直線x=1,圖象經(jīng)過(3,0),下列結(jié)論中,正確的一項是( )
A.abc<0
B.4ac﹣b2<0
C.a﹣b+c<0
D.2a+b<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點B落在AD邊上的B'點,AE是折痕。
(1)試判斷B'E與DC的位置關(guān)系并說明理由。
(2)如果∠C=130°,求∠AEB的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列兩則材料:
材料一:我們可以將任意三位數(shù)記為(其中a,b,c分別表示該數(shù)百位數(shù)字、十位數(shù)字和個位數(shù)字,且a≠0),顯然=100a+10b+c.
材料二:若一個三位數(shù)的百位數(shù)字、十位數(shù)字和個位數(shù)字均不為0,則稱之為原始數(shù),比如123就是一個原始數(shù),將原始數(shù)的三個數(shù)位上的數(shù)字交換順序,可產(chǎn)生出5個原始數(shù),比如由123可以產(chǎn)生出132,213,231,312,321這5個原始數(shù).將這6個數(shù)相加,得到的和1332稱為由原始數(shù)123生成的終止數(shù).利用材料解決下列問題:
(1)分別求出由下列兩個原始數(shù)生成的終止數(shù):243,537;
(2)若一個原始數(shù)的終止數(shù)是另一個原始數(shù)的終止數(shù)的3倍,分別求出所有滿足條件的這兩個原始數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com