【題目】我縣某公司參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤(rùn)捐助給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量 (單位:個(gè))與銷售單價(jià) (單位:元/個(gè))之間的關(guān)系式為.
(1) 若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場(chǎng)調(diào)查的銷售規(guī)律,求銷售利潤(rùn) (單位:元)與銷售單價(jià) (單位:元/個(gè))之間的函數(shù)關(guān)系式;
(2) 在(1)問(wèn)的條件下,若許愿瓶的進(jìn)貨成本不超過(guò)900元,要想獲得最大利潤(rùn),試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤(rùn).
【答案】(1) ;(2)銷售單價(jià)定為每個(gè)15元時(shí),利潤(rùn)最大為1350元.
【解析】試題分析:(1)利用w=銷量×每個(gè)利潤(rùn),進(jìn)而得出函數(shù)關(guān)系式;
(2)利用進(jìn)貨成本不超過(guò)900元,得出x的取值范圍,進(jìn)而得出函數(shù)最值.
試題解析:解:(1)由題意得:w=(x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,∴w與x的函數(shù)關(guān)系式為w=﹣30x2+780x﹣3600;
(2)由題意得:6(﹣30x+600)≤900,解得:x≥15,在w=﹣30x2+780x﹣3600中,對(duì)稱軸為:x=﹣=13.∵a=﹣30,∴當(dāng)x>13時(shí),w隨x的增大而減小,∴x=15時(shí),w最大為:(15﹣6)(﹣30×15+600)=1350,∴銷售單價(jià)定為每個(gè)15元時(shí),利潤(rùn)最大為1350元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=kx+b(k、b是常數(shù))當(dāng)自變量x的取值為1≤x≤5時(shí),對(duì)應(yīng)的函數(shù)值的范圍為﹣2≤y≤2,則此一次函數(shù)的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:y=x+n﹣2與直線l2:y=mx+n相交于點(diǎn)P(1,2).
(1)求m,n的值;
(2)請(qǐng)結(jié)合圖象直接寫出不等式mx+n>x+n﹣2的解集.
(3)若直線l1與y軸交于點(diǎn)A,直線l2與x軸交于點(diǎn)B,求四邊形PAOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料:
問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).
李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),從而得到∠BPC=∠AP′B=__________;,進(jìn)而求出等邊△ABC的邊長(zhǎng)為_(kāi)_________;
問(wèn)題得到解決.
請(qǐng)你參考李明同學(xué)的思路,探究并解決下列問(wèn)題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)﹣2<x<2時(shí),下列函數(shù)中,函數(shù)值y隨自變量x增大而增大的有( 。﹤(gè).
①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中.
(1)請(qǐng)直接寫出點(diǎn)、兩點(diǎn)的坐標(biāo)::___________;:___________;
(2)若把向上平移3個(gè)單位,再向右平移2個(gè)單位得,請(qǐng)?jiān)谏蠄D中畫出,并寫出點(diǎn)的坐標(biāo)___________;
(3)求的面積是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著氣溫的升高,空調(diào)的需求量大增.某家電超市對(duì)每臺(tái)進(jìn)價(jià)分別為2000元、1700元的、兩種型號(hào)的空調(diào),近兩周的銷售情況統(tǒng)計(jì)如下:
銷售時(shí)段 | 銷售量 | 銷售收入 | |
型號(hào) | 型號(hào) | ||
第一周 | 6臺(tái) | 7臺(tái) | 31000元 |
第二周 | 8臺(tái) | 11臺(tái) | 45000元 |
(1)求、兩種型號(hào)的空調(diào)的銷售價(jià);
(2)若該家電超市準(zhǔn)備用不多于54000元的資金,采購(gòu)這兩種型號(hào)的空調(diào)30臺(tái),求種型號(hào)的空調(diào)最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,該家電超市售完這30臺(tái)空調(diào)能否實(shí)現(xiàn)利潤(rùn)不低于15800元的目標(biāo)?若能,請(qǐng)給出采購(gòu)方案.若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求函數(shù)y=﹣x2+4x﹣3的“旋轉(zhuǎn)函數(shù)”.小明是這樣思考的:由函數(shù)y=﹣x2+4x﹣3可知,a1=﹣1,b1=4,c1=﹣3,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.
(1)請(qǐng)參考小明的方法寫出函數(shù)y=﹣x2+4x﹣3的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)與y=x2﹣3nx+n互為“旋轉(zhuǎn)函數(shù)”,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地計(jì)劃用120~180天(含120與180天)的時(shí)間建設(shè)一項(xiàng)水利工程,工程需要運(yùn)送的土石方總量為360萬(wàn)米3.
(1)寫出運(yùn)輸公司完成任務(wù)所需的時(shí)間y(單位:天)與平均每天的工作量x(單位:萬(wàn)米3)之間的函數(shù)關(guān)系式.并給出自變量x的取值范圍;
(2)由于工程進(jìn)度的需要,實(shí)際平均每天運(yùn)送土石方比原計(jì)劃多20%,工期比原計(jì)劃減少了24天,原計(jì)劃和實(shí)際平均每天運(yùn)送土石方各是多少萬(wàn)米3?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com