【題目】如圖,在長方形ABCD中,AB>BC,把長方形沿對角線AC所在直線折疊,使點(diǎn)B落在點(diǎn)E處,AE交CD于點(diǎn)F,連接DE
求證:(1)△AED≌△CDE
(2)△EFD是等腰三角形.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)矩形的性質(zhì)可得出AD=BC、AB=CD,結(jié)合折疊的性質(zhì)可得出AD=CE、AE=CD,進(jìn)而即可證出△ADE≌△CED(SSS);
(2)根據(jù)全等三角形的性質(zhì)可得出∠DEF=∠EDF,利用等邊對等角可得出EF=DF,由此即可證出△DEF是等腰三角形.
證明:(1)∵四邊形ABCD是矩形,
∴AD=BC,AB=CD.
由折疊的性質(zhì)可得:BC=CE,AB=AE,
∴AD=CE,AE=CD.
在△ADE和△CED中,
,
∴△ADE≌△CED(SSS).
(2)由(1)得△ADE≌△CED,
∴∠DEA=∠EDC,即∠DEF=∠EDF,
∴EF=DF,
∴△DEF是等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人駕車分別從A,B兩地同時(shí)出發(fā),相向而行.下圖是二人離A地的距離y(千米)與所用時(shí)間x(小時(shí))的關(guān)系.
(1)請說明交點(diǎn)P所表示的實(shí)際意義: ;
(2)試求出A,B兩地之間的距離;
(3)甲從A地到達(dá)B地所需的時(shí)間為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年11月2日﹣4日,江西省中小學(xué)生研學(xué)實(shí)踐教育推進(jìn)會和全國中小學(xué)綜合實(shí)踐活動(研學(xué)實(shí)踐教育)論壇相繼在撫州舉行.為拓寬學(xué)生視野,引導(dǎo)學(xué)生主動適應(yīng)社會,促進(jìn)書本知識和生活經(jīng)驗(yàn)的深度融合,撫州市某中學(xué)決定組織部分班級去仙蓋山開展研學(xué)旅行活動,在參加此次活動的師生中,若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生.參加此次研學(xué)旅行活動的老師和學(xué)生各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)部有若干個(gè)點(diǎn),用這些點(diǎn)以及正方形ABCD的頂點(diǎn)A、B、C、D把原正方形分割成一些三角形(互相不重疊):
(1)填寫下表:
正方形ABCD內(nèi)點(diǎn)的個(gè)數(shù) | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的個(gè)數(shù) | 4 | 6 |
|
| … |
|
(2)原正方形能否被分割成2019個(gè)三角形?若能,求此時(shí)正方形ABCD內(nèi)部有多少個(gè)點(diǎn)?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD是矩形,已知PB=PC.
(1)若P是矩形外一點(diǎn),求證:PA=PD;
(2)若P是矩形邊AD(或BC)上的一點(diǎn),則PA PD;
(3)若點(diǎn)P在矩形ABCD內(nèi)部,上述結(jié)論是否仍然成立?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形ABC與三角形在平面直角坐標(biāo)系中的位置如圖所示,三角形是由三角形ABC經(jīng)過平移得到的.
(1)分別寫出點(diǎn)的坐標(biāo);
(2)說明三角形是由三角形ABC經(jīng)過怎樣的平移得到的;
(3)若點(diǎn)是三角形ABC內(nèi)的一點(diǎn),則平移后點(diǎn)P在三角形內(nèi)的對應(yīng)點(diǎn)為P‘,寫出點(diǎn)P’的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c滿足|a﹣|++(c﹣4)2=0.
(1)求a、b、c的值;
(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,AC平分∠BAD,CE⊥AB于E,CD⊥AD于F,且BC=DC.
(1)BE與DF是否相等?請說明理由;
(2)若DF=1,AD=3,求AB的長;
(3)若△ABC的面積是23,△ADC面積是18,直接寫出△BEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE交AD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為( 。
A. 31° B. 28° C. 62° D. 56°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com