【題目】三角形ABC與三角形在平面直角坐標(biāo)系中的位置如圖所示,三角形是由三角形ABC經(jīng)過平移得到的.

1)分別寫出點(diǎn)的坐標(biāo);

2)說明三角形是由三角形ABC經(jīng)過怎樣的平移得到的;

3)若點(diǎn)是三角形ABC內(nèi)的一點(diǎn),則平移后點(diǎn)P在三角形內(nèi)的對(duì)應(yīng)點(diǎn)為P‘,寫出點(diǎn)P’的坐標(biāo).

【答案】(1);(2)三角形是由三角形ABC先向左平移4個(gè)單位長度,再向下平移2個(gè)單位長度得到的;(3)點(diǎn)P‘的坐標(biāo)為

【解析】

1)直接根據(jù)題中的直角坐標(biāo)系和圖即可得出答案;

2)找到A,B,C其中一點(diǎn)的平移方式,即可找到三角形的平移方式;

3)根據(jù)點(diǎn)的平移規(guī)律得出答案即可.

1)由題圖知

2)三角形是由三角形ABC先向左平移4個(gè)單位長度,再向下平移2個(gè)單位長度得到的;

3)點(diǎn)P‘的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為改善辦學(xué)條件,計(jì)劃采購A、B兩種型號(hào)的空調(diào),已知采購3臺(tái)A型空調(diào)和2臺(tái)B型空調(diào),需費(fèi)用39000元;4臺(tái)A型空調(diào)比5臺(tái)B型空調(diào)的費(fèi)用多6000元.

(1)求A型空調(diào)和B型空調(diào)每臺(tái)各需多少元;

(2)若學(xué)校計(jì)劃采購A、B兩種型號(hào)空調(diào)共30臺(tái),且A型空調(diào)的臺(tái)數(shù)不少于B型空調(diào)的一半,兩種型號(hào)空調(diào)的采購總費(fèi)用不超過217000元,該校共有哪幾種采購方案?

(3)在(2)的條件下,采用哪一種采購方案可使總費(fèi)用最低,最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為矩形ABCD對(duì)角線BD的中點(diǎn),直線EF經(jīng)過點(diǎn)O分別與邊BC,AD交于點(diǎn)E, F,連接CF,若∠CEF=2CBD,∠CBD =30°,DC=,有下面的結(jié)論:①FD=BE;②∠EOD=150°;③BE2+AB2=AF2;④BC=6;⑤直線FC是線段OD的垂直平分線.其中正確的個(gè)數(shù)為(  )個(gè).

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線x軸的交點(diǎn)分別為A、B(點(diǎn)A在點(diǎn)B的左側(cè)),頂點(diǎn)為C.若a、b、c滿足,則稱該拋物線為正定拋物線;若a、b、c滿足,則稱該拋物線為負(fù)定拋物線.特別地,若某拋物線既是正定拋物線又是負(fù)定拋物線,則稱該拋物線為對(duì)稱拋物線”.

(1)“正定拋物線必經(jīng)過x軸上的定點(diǎn)___________;“負(fù)定拋物線必經(jīng)過x軸上的定點(diǎn)___________.

(2)若拋物線對(duì)稱拋物線,且ABC是等邊三角形,求此拋物線對(duì)應(yīng)的函數(shù)表達(dá)式.

(3)若拋物線正定拋物線,設(shè)此拋物線交y軸于點(diǎn)D,BCD的面積為S,求Sb之間的函數(shù)關(guān)系式.

(4)設(shè)正定拋物線(b>0)x軸的交點(diǎn)分別為的左側(cè)),頂點(diǎn)為M;“負(fù)定拋物線(b>0)x軸的交點(diǎn)分別為、的左側(cè)),頂點(diǎn)為N.在兩條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式中,當(dāng)同時(shí)滿足yx的增大而增大時(shí)的所有x的值在x軸上所對(duì)應(yīng)的點(diǎn)恰好是線段 (包括端點(diǎn))時(shí),直接寫出此時(shí)以M、N、為頂點(diǎn)的四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD,AB>BC,把長方形沿對(duì)角線AC所在直線折疊,使點(diǎn)B落在點(diǎn)E,AECD于點(diǎn)F,連接DE

求證:(1)AED≌△CDE

(2)EFD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛客車從甲地開住乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),兩車距甲地的距離y(千米)與行駛時(shí)間式(小時(shí))之間的函數(shù)圖象如圖所示,則下列說法中錯(cuò)誤的是( 。

A. 客車比出租車晚4小時(shí)到達(dá)目的地B. 客車速度為60千米時(shí),出租車速度為100千米/時(shí)

C. 兩車出發(fā)后3.75小時(shí)相遇D. 兩車相遇時(shí)客車距乙地還有225千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)C06)的直線AC與直線OA相交于點(diǎn)A4,2),動(dòng)點(diǎn)M在線段OA和射線AC上運(yùn)動(dòng),試解決下列問題:

1)求直線AC的解析式;

2)求OAC的面積;

3)是否存在點(diǎn)M、使OMC的面積是OAC的面積的?若存在,求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)在數(shù)軸上表示的數(shù)是,且滿足,多項(xiàng)式是五次四項(xiàng)式.

1)則的值為 ,的值為 的值為 ;

2)已知點(diǎn)是數(shù)軸上的兩個(gè)動(dòng)點(diǎn),點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位的速度向右運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以每秒4個(gè)單位的速度向左運(yùn)動(dòng):

①若點(diǎn)和點(diǎn)經(jīng)過秒后,在數(shù)軸上的點(diǎn)處相遇,求的值和點(diǎn)所表示的數(shù);

②若點(diǎn)運(yùn)動(dòng)到點(diǎn)處,點(diǎn)再出發(fā),則點(diǎn)運(yùn)動(dòng)幾秒后兩點(diǎn)之間的距離為8個(gè)單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB、C、D是反比例函數(shù)y=x>0)圖象上四個(gè)整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)),分別過這些點(diǎn)向橫軸或縱軸作垂線段,以垂線段所在的正方形(如圖)的邊長為半徑作四分之一圓周的兩條弧,組成四個(gè)橄欖形(陰影部分),則這四個(gè)橄欖形的面積總和是__________(用含π的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案