【題目】完成下面的推理.
如圖,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,試說明:AB∥CD.
完成推理過程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
【答案】見解析.
【解析】
理解題意,分析每一步的推導(dǎo)根據(jù).由角的平分線定義得∠ABD=2∠α,∠BDC=2∠β,
根據(jù)等量代換得∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β),由已知∠α+∠β=90°,再由等量代換得∠ABD+∠BDC=180°,最后根據(jù)“同旁內(nèi)角互補(bǔ)兩直線平行”得AB∥CD.
BE平分∠ABD(已知),
∴∠ABD=2∠α(角平分線的定義).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (角平分線的定義)
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代換)
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(等量代換).
∴AB∥CD(同旁內(nèi)角互補(bǔ)兩直線平行).
故答案為:角平分線的定義,角平分線的定義,等量代換,等量代換,同旁內(nèi)角互補(bǔ)兩直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織學(xué)生參加交通安全知識(shí)網(wǎng)絡(luò)測(cè)試活動(dòng).小王對(duì)九年(3)班全體學(xué)生的測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì),并將成績(jī)分為四個(gè)等級(jí):優(yōu)秀、良好、一般、不合格,繪制成如下的統(tǒng)計(jì)圖(不完整),
請(qǐng)你根據(jù)圖中所給的信息解答下列問題:
(1)九年(3)班有名學(xué)生,并把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)已知該市共有12000名中學(xué)生參加了這次交通安全知識(shí)測(cè)試,請(qǐng)你根據(jù)該班成績(jī)估計(jì)該市在這次測(cè)試中成績(jī)?yōu)閮?yōu)秀的人數(shù);
(3)小王查了該市教育網(wǎng)站發(fā)現(xiàn),全市參加本次測(cè)試的學(xué)生中,成績(jī)?yōu)閮?yōu)秀的有5400人,請(qǐng)你用所學(xué)統(tǒng)計(jì)知識(shí)簡(jiǎn)要說明實(shí)際優(yōu)秀人數(shù)與估計(jì)人數(shù)出現(xiàn)較大偏差的原因;
(4)該班從成績(jī)前3名(2男1女)的學(xué)生中隨機(jī)抽取2名參加復(fù)賽,請(qǐng)用樹狀圖或列表法求出抽到“一男一女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知等腰三角形ABC的底邊BC=20cm,D是腰AB上一點(diǎn),且CD=16cm,BD=12cm,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4,AD=6,M是AD邊的中點(diǎn),P是射線AB上的一個(gè)動(dòng)點(diǎn)(不與A,B重合),MN⊥PM交射線BC于N點(diǎn).
(1)如圖1,當(dāng)點(diǎn)N與點(diǎn)C重合時(shí),求AP的長(zhǎng);
(2)如圖2,在點(diǎn)N的運(yùn)動(dòng)過程中,求證: 為定值;
(3)在射線AB上,是否存在點(diǎn)P,使得△DCN∽△PMN?若存在,求此時(shí)AP的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過對(duì)角線BD上一點(diǎn)P作EF∥AB,GH∥AD,與各邊交點(diǎn)分別為點(diǎn)E,F,G,H,則圖中面積相等的平行四邊形的對(duì)數(shù)為( )
A. 3對(duì) B. 4對(duì) C. 5對(duì) D. 6對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個(gè)四邊形的邊角料,東東通過測(cè)量,獲得了如下數(shù)據(jù):AB=3cm,BC=12cm,CD=13cm,AD=4cm,東東由此認(rèn)為這個(gè)四邊形中∠A恰好是直角,你認(rèn)為東東的判斷正確嗎?如果你認(rèn)為他正確,請(qǐng)說明其中的理由;如果你認(rèn)為他不正確,那你認(rèn)為需要什么條件,才可以判斷∠A是直角?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點(diǎn)D在邊BC 上,以AD為折痕△ABD折疊得到△AB′D,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A為函數(shù)y= (x>0)圖象上一點(diǎn),連結(jié)OA,交函數(shù)y= (x>0)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,則△ABC的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com