【題目】如圖1,在平面直角坐標系中,直線分別交軸、軸于、兩點,且,滿足,且,是常數(shù)。直線平分,交軸于點。
(1)若的中點為,連接交于,求證:;
(2)如圖2,過點作,垂足為,猜想與間的數(shù)量關系,并證明你的猜想;
(3)如圖3,在軸上有一個動點(在點的右側(cè)),連接,并作等腰,其中,連接并延長交軸于點,當點在運動時,的長是否發(fā)生改變?若改變,請求出它的變化范圍;若不變,求出它的長度.
【答案】(1)見解析; (2).證明見解析; (3)的長不變,且.
【解析】
(1)根據(jù)非負數(shù)的性質(zhì)求出點A、B的坐標,然后得出△AOB是等腰直角三角形,根據(jù)等腰三角形三線合一的性質(zhì)OM⊥AB,再根據(jù)角平分線的定義求出∠ABD=22.5°,然后根據(jù)直角三角形兩銳角互余的性質(zhì)與三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠OND=67.5°,∠ODB=67.5°,利用等角對等邊得到ON=OD;
(2)延長AE交BO于C,得△ABE≌△CBE,得到AC=2AE,再證△OAC≌△OBD得到BD=AE,從而得到BD=2AE;
(3)作FH⊥OP,垂足為H,利用角角邊定理可以證明△OBP與△HPF全等,根據(jù)全等三角形對應邊相等可得FH=OP、PH=OB=4t,再證FH=AH,∠FAH=∠GAO=45°,OG=OA=4t.即可得到結(jié)論.
(1)∵直線分別交軸、軸于、兩點,且,滿足,且,
,
當時,,
當時,,
解得:,
點,的坐標是,,
是等腰直角三角形.
∵點是中點,
,
,
∵直線平分,
,
,
,
,
(等角對等邊);
(2)答:.
理由如下:延長交于,
平分,
,
于點,
,
在△ABE和△CBE中,∵∠ABD=∠CBD,BE=BE,∠AEB=∠CEB=90°,
,
,
,
,
,
又∵,(對頂角相等),
,
在與中,∵,
,
,
;
(3)的長不變,且.
過作,垂足為,.
,,.
是等腰直角三角形,.
在與中,∵∠BPO=∠PFH,∠BOP=∠PHF=90°,BP=PF,
,
,,
,,
,
,
,
是等腰直角三角形,
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC為等邊三角形,FB平分∠ABC,D為BF的中點,連接AD交BC的延長線于點E,若EF⊥BF,則_______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=60°,OA=OB,動點C從點O出發(fā),沿射線OB方向移動,以AC為邊在右側(cè)作等邊△ACD,連接BD,則BD所在直線與OA所在直線的位置關系是( 。
A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王老師對試卷講評課中學生參與的深度與廣度進行評價調(diào)查,每位學生最終評價結(jié)果為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項中的一項評價組隨機抽取了若干名學生的參與情況,繪制成如圖所示的統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了 名學生;
(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在扇形的圓心角度數(shù)為 度;
(3)請將條形圖補充完整;
(4)如果全校學生有2800名,那么在試卷講評課中,“獨立思考”的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】這是一道我們曾經(jīng)探究過的問題:如圖1.等腰直角三角形中,,.直線經(jīng)過點,過作于點,過作于點.易證得≌.(無需證明),我們將這個模型稱為“一線三等角”或者叫“K形圖”.接下來,我們就利用這個模型來解決一些問題:
(模型應用)
(1)如圖2.已知直線l1:與與坐標軸交于點A、B.以AB為直角邊作等腰直角三角形ABC,若存在,請求出C的坐標;不存在,若說明理由.
(2)如圖3已知直線l1:與坐標軸交于點A、B.將直線l1繞點A逆時針旋轉(zhuǎn)45°至直線l2.直線l2在x軸上方的圖像上是否存在一點Q,使得△QAB是以QA為底的等腰直角三角形?若存在,請求出直線BQ的函數(shù)關系式;若不存在,說明理由.
(拓展延伸)
(3)直線AB:與軸負半軸、軸正半軸分別交于A、B兩點.分別以OB、AB為邊,點B為直角頂點在第一、二象限內(nèi)作等腰直角△OBF和等腰直角△ABE,連EF交y軸于P點,如圖4,△EPB的面積是否確定?若確定,請求出具體的值;若不確定,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應點A′的坐標是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,學校旗桿附近有一斜坡,小明準備測量旗桿AB的高度,他發(fā)現(xiàn)當斜坡正對著太陽時,旗桿AB的影子恰好落在水平地面和斜坡的坡面上,此時小明測得水平地面上的影子長BC=20米,斜坡坡面上的影子CD=8米,太陽光AD與水平地面BC成30°角,斜坡CD與水平地面BC成45°的角,求旗桿AB的高度.(=1.732,=1.414,=2.449,精確到1米).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ABC,∠ACB的平分線交于點O,D是外角與內(nèi)角平分線交點,E是外角平分線交點,若∠BOC=120°,則∠D=_____;∠E=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com