【題目】如圖,在平面直角坐標系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應點A的坐標是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

【答案】D.

【解析】

試題分析:方法一:ABOABO關于原點位似,∴△ ABO∽△ABO..AE=AD=2,OE=OD=1.A(-1,2).同理可得A′′(1,2).

方法二:點A(3,6)且相似比為,點A的對應點A的坐標是(3×,6×),A(-1,2).

A′′和點A(-1,2)關于原點O對稱,A′′(1,2).

故答案選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校為美化校園,準備在長35米,寬20米的長方形場地上,修建若干條寬度相同的道路,余下部分作草坪,并請全校學生參與方案設計,現(xiàn)有3位同學各設計了一種方案,圖紙分別如圖l、圖2和圖3所示(陰影部分為草坪).

請你根據(jù)這一問題,在每種方案中都只列出方程不解.

①甲方案設計圖紙為圖l,設計草坪的總面積為600平方米.

②乙方案設計圖紙為圖2,設計草坪的總面積為600平方米.

③丙方案設計圖紙為圖3,設計草坪的總面積為540平方米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCDAB=,BC=1,將矩形ABCD繞頂點B旋轉(zhuǎn)得到矩形A'BC'D,點A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線分別交軸、軸于、兩點,,滿足,且,是常數(shù)。直線平分,交軸于點。

(1)的中點為,連接,求證:;

(2)如圖2,過點,垂足為,猜想間的數(shù)量關系,并證明你的猜想;

(3)如圖3,軸上有一個動點(點的右側),連接,并作等腰,其中,連接并延長交軸于點,當點在運動時,的長是否發(fā)生改變?若改變,請求出它的變化范圍;若不變,求出它的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系上,已知點A84),ABy軸于B,ACx軸于C,直線yxABD

1)直接寫出B、C、D三點坐標;

2)若EOD延長線上一動點,記點E橫坐標為a,BCE的面積為S,求Sa的關系式;

3)當S20時,過點EEFABF,GH分別為AC、CB上動點,求FG+GH的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在他家里的時鐘上安裝了一個電腦軟件,他設定當鐘聲在n點鐘響起后,下一次則在(3n﹣1)小時后響起,例如鐘聲第一次在3點鐘響起,那么第2次在(3×3﹣1=8)小時后,也就是11點響起,第3次在(3×11﹣1=32)小時后,即7點響起,以此類推…;現(xiàn)在第1次鐘聲響起時為2點鐘,那么第3次響起時為_____點,第2017次響起時為_____點(如圖鐘表,時間為12小時制).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論正確的是( 。

abc<0;a+c>0;2a+b=0;④關于x的一元二次方程ax2+bx+c=0的解是x1=﹣1,x2=3b2<4ac

A. ②③④ B. ①②③④ C. ①③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是201812月份的日歷,我們選擇其中的方框部分,將每個方框部分中4個位置上的數(shù)交叉求平方和,再相減,例如:(32+112)-(42+102)=14,(212+292)-(222+282)=14,不難發(fā)現(xiàn)結果都是14.

(1)今天是1212日,請你寫一個含今天日期在內(nèi)的類似部分的算式;

(2)請你利用整式的運算對以上規(guī)律加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點Ba,b)是第一象限內(nèi)一點,且a、b滿足等式a2-6a+9+|b-1|=0

1)求點B的坐標;

2)如圖,動點C以每秒1個單位長度的速度從O點出發(fā),沿x軸的正半軸方向運動,同時動點A以每秒2個單位長度的速度從O點出發(fā),沿y軸的正半軸方向運動,設運動的時間為t秒,當t為何值時,ABCAB為斜邊的等腰直角三角形;

3)如圖,在(2)的條件下,作∠ABC的平分線BD,設BD的長為m,ADB的面積為S.請用含m的式子表示S

查看答案和解析>>

同步練習冊答案