【題目】如圖,在△ABC中,AB=AC=10cm,BC=16cm,DE=4cm.動(dòng)線段DE(端點(diǎn)D從點(diǎn)B開(kāi)始)沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)端點(diǎn)E到達(dá)點(diǎn)C時(shí)運(yùn)動(dòng)停止.過(guò)點(diǎn)E作EF∥AC交AB于點(diǎn)F(當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),EF與CA重合),連接DF,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).
(1)直接寫出用含t的代數(shù)式表示線段BE、EF的長(zhǎng);
(2)在這個(gè)運(yùn)動(dòng)過(guò)程中,△DEF能否為等腰三角形?若能,請(qǐng)求出t的值;若不能,請(qǐng)說(shuō)明理由;
(3)設(shè)M、N分別是DF、EF的中點(diǎn),求整個(gè)運(yùn)動(dòng)過(guò)程中,MN所掃過(guò)的面積.
【答案】(1)BE=(t+4)cm;EF=(t+4)cm;(2)當(dāng)t=0、或秒時(shí),△DEF為等腰三角形;(3)整個(gè)運(yùn)動(dòng)過(guò)程中,MN所掃過(guò)的面積為cm2.
【解析】
解:(1),
.
(2)分三種情況討論:
①當(dāng)時(shí),
有
∴點(diǎn)與點(diǎn)重合,
∴
②當(dāng)時(shí),
∴,
解得:
③當(dāng)時(shí),
有
∴△DEF∽△ABC.
∴, 即,
解得:.
綜上所述,當(dāng)、或秒時(shí),△為等腰三角形.
(3)設(shè)P是AC的中點(diǎn),連接BP,
∵∥
∴△∽△.
∴∴
又∴△∽△
∴
∴點(diǎn)沿直線BP運(yùn)動(dòng),MN也隨之平移.
如圖,設(shè)MN從ST位置運(yùn)動(dòng)到PQ位置,則四邊形PQST是平行四邊形.
∵、分別是、的中點(diǎn),∴∥DE,且ST=MN=
分別過(guò)點(diǎn)T、P作TK⊥BC,垂足為K,PL⊥BC,垂足為L,延長(zhǎng)ST交PL于點(diǎn)R,則四邊形TKLR是矩形,
當(dāng)t=0時(shí),EF=(0+4)=TK=EF···
當(dāng)t=12時(shí),EF=AC=10,PL=AC··10·
∴PR=PL-RL=PL-TK=3-
∴·PR=2×
∴整個(gè)運(yùn)動(dòng)過(guò)程中,MN所掃過(guò)的面積為cm2. 13分
(1)由題意得,利用相似比求出EF的長(zhǎng)
(2)分三種情況討論:①當(dāng)時(shí),②當(dāng)時(shí), ③當(dāng)時(shí)
(3)設(shè)P是AC的中點(diǎn),連接BP,通過(guò)相似證得,、分別是、的中點(diǎn),求得ST="2" ,分別過(guò)點(diǎn)T、P作TK⊥BC,垂足為K,PL⊥BC,垂足為L,延長(zhǎng)ST交PL于點(diǎn)R,則四邊形TKLR是矩形,利用三角函數(shù)求得PL、TK的值,得出PR的值,從而得出結(jié)論
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,點(diǎn)E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.
(1)求證:△AEF≌△DEB;
(2)若∠BAC=90°,試判斷四邊形ADCF的形狀,并證明你的結(jié)論;
(3)在(2)的情況下,點(diǎn)M在AC線段上移動(dòng),請(qǐng)直接回答,當(dāng)點(diǎn)M移動(dòng)到什么位置時(shí),MB+MD有最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,左右兩個(gè)拋物線形是全等的.正常水位時(shí),大孔水面寬度為,頂點(diǎn)距水面,小孔頂點(diǎn)距水面.當(dāng)水位上漲剛好淹沒(méi)小孔時(shí),大孔的水面寬度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l1:y=2x+1、直線l2:y=﹣x+7,直線l1、l2分別交x軸于B、C兩點(diǎn),l1、l2相交于點(diǎn)A.
(1)求A、B、C三點(diǎn)坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P,且AE=CF.
(1)求證:AF=BE,并求∠FPB的度數(shù);
(2)若AE=2,試求AP·AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央電視臺(tái)的“朗讀者”節(jié)目激發(fā)了同學(xué)們的讀書熱情,為了引導(dǎo)學(xué)生“多讀書,讀好書”,某校對(duì)七年級(jí)部分學(xué)生的課外閱讀量進(jìn)行了隨機(jī)調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如下所示:
(1)統(tǒng)計(jì)表中的a=________,b=___________,c=____________;
(2)請(qǐng)將頻數(shù)分布表直方圖補(bǔ)充完整;
(3)求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù);
(4)若該校七年級(jí)共有1200名學(xué)生,請(qǐng)你分析該校七年級(jí)學(xué)生課外閱讀7本及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),F是AM上一點(diǎn),EF⊥AM,垂足為F,交AD延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=6,F為AM的中點(diǎn),求DN的長(zhǎng);
(3)若AB=12,DE=1,BM=5,求DN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格中的每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)間的連線為邊的三角形稱為“格點(diǎn)三角形”,圖中的△ABC是格點(diǎn)三角形.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(-1,-1).
(1)把△ABC向左平移8格后得到△A1B1C1,畫出△A1B1C1的圖形并寫出點(diǎn)B1的坐標(biāo);
(2)把△ABC繞點(diǎn)C按順時(shí)針旋轉(zhuǎn)90°后得△A2B2C2,畫出△A2B2C2的圖形并寫出B2的坐標(biāo);
(3)把△ABC以點(diǎn)A為位似中心放大,使放大前后對(duì)應(yīng)邊的比為1∶2,畫出△AB3C3的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小剛用如圖所示的兩個(gè)轉(zhuǎn)盤做配紫色游戲,游戲規(guī)則是:分別旋轉(zhuǎn)兩個(gè)轉(zhuǎn)盤,若其中一個(gè)轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一個(gè)轉(zhuǎn)出了藍(lán)色,則可以配成紫色.此時(shí)小剛獲勝,否則小明獲勝.
(1)利用畫樹(shù)狀圖或列表法表示游戲所有可能出現(xiàn)的結(jié)果.
(2)這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com