【題目】科幻小說(shuō)《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié):科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過(guò)一天后,測(cè)試出這種植物高度的增長(zhǎng)情況(如下表).

由這些數(shù)據(jù),科學(xué)家推測(cè)出植物每天高度增長(zhǎng)量y是溫度x的函數(shù).且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.

1)請(qǐng)你選擇一種適當(dāng)?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡(jiǎn)要說(shuō)明不選擇另外兩種函數(shù)的理由;

2)溫度為多少時(shí),這種植物每天高度的增長(zhǎng)量最大?

3)如果實(shí)驗(yàn)室溫度保持不變,在10天內(nèi)要使該植物高度增長(zhǎng)量的總和超過(guò)250mm,那么實(shí)驗(yàn)室的溫度x應(yīng)該在哪個(gè)范圍內(nèi)選擇?請(qǐng)直接寫(xiě)出結(jié)果.

【答案】1)選擇二次函數(shù),,理由見(jiàn)解析;(2-1℃;(3-6℃<x4℃.

【解析】

1)選擇二次函數(shù),設(shè)),然后選擇、三組數(shù)據(jù),利用待定系數(shù)法求二次函數(shù)解析式即可,再根據(jù)反比例函數(shù)的自變量不能為,一次函數(shù)的特點(diǎn),即可排除另兩種函數(shù);

2)把二次函數(shù)解析式整理成頂點(diǎn)式形式,再根據(jù)二次函數(shù)的最值問(wèn)題解答;

3)求出平均每天的高度增長(zhǎng)量為,然后根據(jù)求出的值,再根據(jù)二次函數(shù)的性質(zhì)寫(xiě)出的取值范圍.

1)選擇二次函數(shù),設(shè)),

時(shí),

時(shí),;

時(shí),,

,

解得:

y關(guān)于x的函數(shù)關(guān)系式為;

不選另外兩個(gè)函數(shù)的理由:

∵點(diǎn)(0,49)不可能在反比例函數(shù)圖象上,

y不是x的反比例函數(shù);

∵點(diǎn)(-4,41),(-249),(241)不在同一直線(xiàn)上,

y不是x的一次函數(shù);

2)由(1)得:

∴當(dāng)時(shí),y有最大值為50

即當(dāng)溫度為-1℃時(shí),這種作物每天高度增長(zhǎng)量最大;

(3)天內(nèi)要使該植物高度增長(zhǎng)量的總和超過(guò),

平均每天該植物高度增長(zhǎng)量超過(guò)

當(dāng)時(shí),,

整理得,,

解得,

10天內(nèi)要使該植物高度增長(zhǎng)量的總和超過(guò),實(shí)驗(yàn)室的溫度應(yīng)保持在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,有一個(gè)由六個(gè)邊長(zhǎng)為1的正方形組成的圖案,其中點(diǎn)AB的坐標(biāo)分別為(3,5),(6,1).若過(guò)原點(diǎn)的直線(xiàn)l將這個(gè)圖案分成面積相等的兩部分,則直線(xiàn)l的函數(shù)解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,定義:直線(xiàn)x、y軸分別相交于A、B兩點(diǎn),將繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到,過(guò)點(diǎn)A、B、D的拋物線(xiàn)P叫做直線(xiàn)的“糾纏拋物線(xiàn)”,反之,直線(xiàn)叫做P的“糾纏直線(xiàn)",兩線(xiàn)“互為糾纏線(xiàn)”.

1)若,則糾纏物線(xiàn)P的函數(shù)解析式是____________

2)判斷并說(shuō)明是否“互為糾纏線(xiàn)”.

3)如圖②,若糾纏直線(xiàn),糾纏拋物線(xiàn)P的對(duì)稱(chēng)軸與相交于點(diǎn)E,點(diǎn)F上,點(diǎn)QP的對(duì)稱(chēng)軸上,當(dāng)以點(diǎn)CE、QF為頂點(diǎn)的四邊形是以為一邊的平行四邊形時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用A、B兩種機(jī)器人搬運(yùn)大米,A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)20袋大米,A型機(jī)器人搬運(yùn)700袋大米與B型機(jī)器人搬運(yùn)500袋大米所用時(shí)間相等.求A、B型機(jī)器人每小時(shí)分別搬運(yùn)多少袋大米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)Px,y)和Qx,y′),給出如下定義:如果y′=,那么稱(chēng)點(diǎn)Q為點(diǎn)P的“伴隨點(diǎn)”.

例如:點(diǎn)(56)的“伴隨點(diǎn)”為點(diǎn)(5,6);點(diǎn)(﹣5,6)的“伴隨點(diǎn)”為點(diǎn)(﹣5,﹣6).

1)直接寫(xiě)出點(diǎn)A2,1)的“伴隨點(diǎn)”A′的坐標(biāo).

2)點(diǎn)Bmm+1)在函數(shù)ykx+3的圖象上,若其“伴隨點(diǎn)”B′的縱坐標(biāo)為2,求函數(shù)ykx+3的解析式.

3)點(diǎn)C、D在函數(shù)y=﹣x2+4的圖象上,且點(diǎn)C、D關(guān)于y軸對(duì)稱(chēng),點(diǎn)D的“伴隨點(diǎn)”為D′.若點(diǎn)C在第一象限,且CDDD′,求此時(shí)“伴隨點(diǎn)”D′的橫坐標(biāo).

4)點(diǎn)E在函數(shù)y=﹣x2+n(﹣1x2)的圖象上,若其“伴隨點(diǎn)”E′的縱坐標(biāo)y′的最大值為m1m3),直接寫(xiě)出實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去年冬天,我市遭遇大雪,為確保道路正常通行,市政府啟用了鏟雪車(chē)清理道路,已知一臺(tái)鏟雪車(chē)的工作效率相當(dāng)于一名環(huán)衛(wèi)工人的倍,一臺(tái)鏟雪車(chē)清理立方米的積雪,要比名環(huán)衛(wèi)工人清理這些積雪少用小時(shí).

(1)求一臺(tái)鏟雪車(chē)每小時(shí)清雪多少立方米?

(2)現(xiàn)有一項(xiàng)清理任務(wù),要求不超過(guò)小時(shí)完成立方米的積需清理,市政府調(diào)配了臺(tái)鏟雪車(chē)和名環(huán)衛(wèi)工人,工作了小時(shí)后,又調(diào)配了一些鏟雪車(chē)進(jìn)行支援,則市政府至少又調(diào)配了幾臺(tái)鏟雪車(chē)才能完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?

問(wèn)題探究:不妨假設(shè)能搭成m種不同的等腰三角形,為探究mn之間的關(guān)系,我們可以從特殊入手,通過(guò)試驗(yàn)、觀察、類(lèi)比,最后歸納、猜測(cè)得出結(jié)論.

探究一:

1)用3根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?此時(shí),顯然能搭成一種等腰三角形.所以,當(dāng)n3時(shí),m1

2)用4根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形,所以,當(dāng)n4時(shí),m0

3)用5根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形?若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形,所以,當(dāng)n5時(shí),m1

4)用6根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形?若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形,所以,當(dāng)n6時(shí),m1

綜上所述,可得表①

n

3

4

5

6

m

1

0

1

1

探究二:

1)用7根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?(仿照上述探究方法,寫(xiě)出解答過(guò)程,并把結(jié)果填在表②中)

2)分別用8根、9根、10根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?(只需把結(jié)果填在表②中)

n

7

8

9

10

m

你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,

解決問(wèn)題:用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?

(設(shè)n分別等于4k1、4k、4k+1、4k+2,其中k是整數(shù),把結(jié)果填在表 ③中)

n

4k1

4k

4k+1

4k+2

m

問(wèn)題應(yīng)用:用2016根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?(要求寫(xiě)出解答過(guò)程)其中面積最大的等腰三角形每個(gè)腰用了   根木棒.(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校準(zhǔn)備從體育用品商店一次性購(gòu)買(mǎi)若干個(gè)籃球和足球(每個(gè)籃球的價(jià)格相同,每個(gè)足球的價(jià)格相同),購(gòu)買(mǎi)1個(gè)足球和2個(gè)籃球共需270元;購(gòu)買(mǎi)2個(gè)足球和3個(gè)籃球共需464元.

1)問(wèn)足球和籃球的單價(jià)各是多少元?

2)若購(gòu)買(mǎi)足球和籃球共20個(gè),且購(gòu)買(mǎi)籃球的個(gè)數(shù)不超過(guò)足球個(gè)數(shù)的2倍,購(gòu)買(mǎi)球的總費(fèi)用不超過(guò)1910元,問(wèn)該學(xué)校有哪幾種不同的購(gòu)買(mǎi)方案?哪種方案最省錢(qián)?

查看答案和解析>>

同步練習(xí)冊(cè)答案