【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線上一點,點O是線段AD上一點,OP=OC.
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點P在OC的垂直平分線上.
【答案】(1)30°;(2)見解析
【解析】
(1)利用等邊對等角,即可證得:∠APO=∠ABO,∠DCO=∠DBO,則∠APO+∠DCO=∠ABO+∠DBO=∠ABD,據(jù)此即可求解;
(2)根據(jù)角的關系,證明∠POC=60°且OP=OC,即可證得△OPC是等邊三角形,進而解答即可.
(1)如圖1,連接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°﹣∠BAD=30°
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;
(2)∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等邊三角形,
∴OP=PC,
∴點P在OC的垂直平分線上.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(﹣8,0),點P的坐標為 ,直線y= x+b過點A,交y軸于點B,以點P為圓心,以PA為半徑的圓交x軸于點C.
(1)判斷點B是否在⊙P上?說明理由.
(2)求過A、B、C三點的拋物線的解析式;并求拋物線與⊙P另外一個交點為D的坐標.
(3)⊙P上是否存在一點Q,使以A、P、B、Q為頂點的四邊形是菱形?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.
(1)猜想ED與⊙O的位置關系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知ab<0,則+=_____;
(2)已知ab>0,則+=______;
(3)若a,b都是非零有理數(shù),則++的值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校“數(shù)學魔盜團”社團準備購買A,B兩種魔方,已知購買2個A種魔方和6個B種魔方共需130元,購買1個A種魔方比1個B種魔方多花5元.
(1)求這兩種魔方的單價;
(2)結合社員們的需求,社團決定購買A,B兩種魔方共100個(其中A種魔方不超過50個).“雙11期間”某商店有兩種優(yōu)惠活動,如圖所示.請根據(jù)以上信息填空:購買A種魔方________個時選擇活動一盒活動二購買所需費用相同.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列哪一個是假命題( )
A.五邊形外角和為
B.切線垂直于經(jīng)過切點的半徑
C.關于 軸的對稱點為
D.拋物線 對稱軸為直線
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,過點O作兩條射線OM,ON,且∠AOM=∠CON=90°.
(1)若OC平分∠AOM,求∠AOD的度數(shù);
(2)若∠1=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D 為 AB的中點.
(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.
①若點 Q 的運動速度與點 P 的運動速度相等,經(jīng)過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD 與△CQP 全等?
(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經(jīng)過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com