精英家教網 > 初中數學 > 題目詳情

【題目】矩形各個內角的平分線圍成一個四邊形,則這個四邊形一定是( 。

A. 正方形 B. 菱形 C. 矩形 D. 平行四邊形

【答案】A

【解析】根據題意畫出圖形,如圖所示,

∵四邊形ABCD是矩形,

∴∠ABC=BCD=CDA=BAD=90°AD=BC.

AF、BH、CH、DF分別是角平分線,

∴矩形的四個角被分成的八個角都是45°角,

∴∠AEB=180°-45°×2=90°,

同理可得∠F=DGC=H=90°,

∴四邊形EFGH的四個角都是直角.

∴四邊形EFGH是矩形.

AD=BC,∠FAD=∠FDA=∠HBC=∠HCB=45°,

∴△BCH≌△ADF

AF=BH,

AF-AE=BH-BE,

EF=EH,

矩形EFGH是正方形.

故矩形各內角的平分線如果圍成一個四邊形,則這個四邊形是正方形.

故選A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,網格中每個小正方形的頂點叫格點,△OAB的頂點的坐標分別為O(0,0)、A(1,3)、B(5,0).
(1)請畫出與△OAB關于原點對稱的△OCD;(其中A的對稱點為C,B的對稱點為D)
(2)在(1)的條件下,連接BC、DA,請畫出一條直線MN(不與直線AC和坐標軸重合),將四邊形ABCD的面積分成相等的兩部分,其中M、N分別在AD和BC上,且M、N均為格點,并直接寫出直線MN的解析式(寫出一個即可).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知∠AOB=100°,COD=40°,OE平分∠AOC,OF平分∠BOD.(本題中的角均為大于且小于等于180°的角).

(1)如圖1,當OB、OC重合時,求∠EOF的度數;

(2)當∠COD從圖1所示位置繞點O順時針旋轉n°(0<n<90)時,∠AOE﹣BOF的值是否為定值?若是定值,求出∠AOE﹣BOF的值;若不是,請說明理由.

(3)當∠COD從圖1所示位置繞點O順時針旋轉n°(0<n<180)時,滿足∠AOD+EOF=6COD,則n=__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D= , 求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我區(qū)某中學體育組因高中教學需要本學期購進籃球和排球共80個,共花費5800元,已知籃球的單價是80元/個,排球的單價是50元/個.

(1)籃球和排球各購進了多少個(列方程組解答)?

(2)因該中學秋季開學準備為初中也購買籃球和排球,教學資源實現共享,體育組提出還需購進同樣的籃球和排球共40個,但學校要求花費不能超過2810元,那么籃球最多能購進多少個(列不等式解答)?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知在平面直角坐標系中,O為坐標原點,點A的坐標為(1,a),點B的坐標為(b,1),點C的坐標為(c,0),其中a、b滿足(a+b﹣8)2+|a﹣b+2|=0.

(1)求A、B兩點的坐標;

(2)當ABC的面積為6時,求點C的坐標;

(3)當4≤SABC10時,求點C的橫坐標c的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將-2,-1,0,1,2,3,4,5,6,7這10個數分別填寫在五角星中每兩條線的交點處(每個交點處只填寫一個數),將每一條線上的4個數相加,共得5個數,設為a1,a2,a3,a4,a5.

(1)求(a1+a2+a3+a4+a5)的值;

(2)交換其中任何兩位數的位置后,(a1+a2+a3+a4+a5)的值是否改變?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,AB是⊙O的直徑.PC是⊙O的切線,C為切點,PD⊥AB于點D,交AC于點E.
(1)求證:∠PCE=∠PEC;
(2)若AB=10,ED= , sinA= , 求PC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】初二年級教師對試卷講評課中學生參與的深度與廣度進行評價調查,其評價項目為主動質疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初二學生的參與情況,繪制成如圖所示的頻數分布直方圖和扇形統(tǒng)計圖(均不完整),請根據圖中所給信息解答下列問題:

(1)在這次評價中,一共抽查了 名學生;

(2)在扇形統(tǒng)計圖中,項目“主動質疑”所在的扇形的圓心角的度數為 度;

(3)請將頻數分布直方圖補充完整;

(4)如果全市有6000名初二學生,那么在試卷評講課中,“獨立思考”的初二學生約有多少人?

查看答案和解析>>

同步練習冊答案