【題目】為了全面提升中小學(xué)教師的綜合素質(zhì),貴陽市將對教師的專業(yè)知識每三年進(jìn)行一次考核.某校決定為全校數(shù)學(xué)教師每人購買一本義務(wù)教育《數(shù)學(xué)課程標(biāo)準(zhǔn)(2011年版)》(以下簡稱《標(biāo)準(zhǔn)》),同時每人配套購買一本《數(shù)學(xué)課程標(biāo)準(zhǔn)(2011年版)解讀》(以下簡稱《解讀》),其中《解讀》的單價比《標(biāo)準(zhǔn)》的單價多25元.若學(xué)校購買《標(biāo)準(zhǔn)》用了378元,購買《解讀》用了1053元,請問《標(biāo)準(zhǔn)》和《解讀》的單價各是多少元?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2-2ax+c與x軸交于A,B兩點(diǎn),與y軸正半軸交于點(diǎn)C,且A(-1,0).
(1)一元二次方程ax2-2ax+c=0的解是 ;
(2)一元二次不等式ax2-2ax+c>0的解集是 ;
(3)若拋物線的頂點(diǎn)在直線y=2x上,求此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫州市處于東南沿海,夏季經(jīng)常遭受臺風(fēng)襲擊,一次,溫州氣象局測得臺風(fēng)中心在溫州市的正西方向300千米的處,以每小時千米的速度向東偏南的方向移動,距臺風(fēng)中心200千米的范圍是受臺風(fēng)嚴(yán)重影響的區(qū)域,試問:
(1)臺風(fēng)中心在移動過程中離溫州市最近距離是多少千米?
(2)溫州市是否受臺風(fēng)影響?若不會受到,請說明理由;若會受到,求出溫州市受臺風(fēng)嚴(yán)重影響的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=4,點(diǎn)P是AB邊上一個動點(diǎn),過點(diǎn)P作AB的垂線交AC邊與點(diǎn)D,以PD為邊作∠DPE=60°,PE交BC邊與點(diǎn)E.
(1)當(dāng)點(diǎn)D為AC邊的中點(diǎn)時,求BE的長;
(2)當(dāng)PD=PE時,求AP的長;
(3)設(shè)AP 的長為,四邊形CDPE的面積為,請直接寫出與的函數(shù)解析式及自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面對話:
小紅媽:“售貨員,請幫我買些梨.”
售貨員:“小紅媽,您上次買的那種梨都賣完了,我們還沒來得及進(jìn)貨,我建議這次您買些進(jìn)的蘋果,價格比梨貴一點(diǎn),不過蘋果的營養(yǎng)價值更高.”
小紅媽:“好,你們很講信用,這次我照上次一樣,也花30元錢。”對照前后兩次的電腦小票,小紅媽發(fā)現(xiàn):每千克蘋果的價是梨的1.5倍,蘋果的重量比梨輕2.5千克.
試根據(jù)上面對話和小紅媽的發(fā)現(xiàn),分別求出梨和蘋果的單價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,ACB=90°,DE是AB邊的垂直平分線,與AC交于點(diǎn)D,與AB交于點(diǎn)E,M是BD的中點(diǎn)
(1)求證: CM= EM;
(2)當(dāng)線段AC長度改變時, △CME與△ABD的面積之比是否發(fā)生變化?如果不變,求出比值;如果發(fā)生變化。說明如何變化.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).
(1)圖2中的陰影部分的面積為 ;
(2)觀察圖2請你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 ;
(3)根據(jù)(2)中的結(jié)論,若x+y=7,xy=,則x﹣y= ;
(4)實(shí)際上通過計算圖形的面積可以探求相應(yīng)的等式.根據(jù)圖3,寫出一個因式分解的等式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:
如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷線段MD與MN的關(guān)系,得出結(jié)論;
結(jié)論:DM、MN的關(guān)系是: ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C旋轉(zhuǎn)180°,其他條件不變,則(2)中的結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,點(diǎn)E,F分別是BC,DC上的動點(diǎn).沿EF 折疊△CEF,使點(diǎn)C的對稱點(diǎn)G落在AD上,若AB=3,BC=5,求CF的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com